• Title/Summary/Keyword: Silicon waveguide

Search Result 82, Processing Time 0.017 seconds

Planar Waveguide Devices for Communication and Sensing Applications

  • Okamoto, Katsunari
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.290-297
    • /
    • 2010
  • The paper reviews progress and future prospects of two kinds of planar waveguide devices; they are (a) silica and silicon photonics multi/demultiplexers for communications and signal processing applications, and (b) a novel waveguide spectrometer based on Fourier transform spectroscopy for sensing applications.

A Short Wavelength Coplanar Waveguide Employing Periodic 3D Coupling Structures on Silicon Substrate

  • Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.118-120
    • /
    • 2016
  • A coplanar waveguide employing periodic 3D coupling structures (CWP3DCS) was developed for application in miniaturized on-chip passive components on silicon radio frequency integrated circuits (RFIC). The CWP3DCS showed the shortest wavelength of all silicon-based transmission line structures that have been reported to date. Using CWP3DCS, a highly miniaturized impedance transformer was fabricated on silicon substrate, and the resulting device showed good RF performance in a broad band from 4.6 GHz to 28.6 GHz. The device as was 0.04 mm2 in size, which is only 0.74% of the size of the conventional transformer on silicon substrate.

Optical-Loss Measurement of a Silicon-Slab Waveguide

  • Tresna, Wildan Panji;Putra, Alexander William Setiawan;Maruyama, Takeo
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.551-557
    • /
    • 2020
  • A mirror-in-slab waveguide is fabricated on a slab waveguide by using the refractive-index contrast between two materials, with the reflection performance depending on the slab waveguide's design. In this research, a slab waveguide design consisting of silicon (Si) as the core and SiO2 as the substrate was designed and developed to determine the coupling, waveguide, and mirror losses. Based on experimental results, coupling loss is dominant and is affected by the design of the slab waveguide. Furthermore, the mirror loss is affected by the design of the mirror, such as the curvature radius and the size of the mirror. TE and TM polarizations of light are used in the measurements. The experimental results show that mirror losses due to reflection by mirrors are 0.011 dB/mirror and 0.007 dB/mirror for TE and TM polarizations respectively. A simulation was performed to confirm whether the size of mirror is sufficient to reflect the input light, and to check the quality of the surfaces of fabricated mirrors.

Computational analysis of the effect of SOI vertical slot optical waveguide specifications on integrated-optic biochemical waveguide wensitivity

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.395-407
    • /
    • 2021
  • The effect of the specifications of a silicon-on-insulator vertical slot optical waveguide on the sensitivity of homogeneous and surface sensing configurations for TE and TM polarization, respectively, was systematically analyzed using numerical software. The specifications were optimized based on the confinement factor and transmission power of the TE-guided mode distributed in the slot. The waveguide sensitivities of homogeneous and surface sensing were calculated according to the specifications of the optimized slot optical waveguide.

Basic Study on RF Characteristics of Thin-Film Transmission Line Employing ML/CPW Composite Structure on Silicon Substrate and Its Application to a Highly Miniaturized Impedance Transformer

  • Jeong, Jang-Hyeon;Son, Ki-Jun;Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • A thin-film transmission line (TFTL) employing a microstrip line/coplanar waveguide (ML/CPW) was fabricated on a silicon substrate for application to a miniaturized on-chip RF component, and the RF characteristics of the device with the proposed structure were investigated. The TFTL employing a ML/CPW composite structure exhibited a shorter wavelength than that of a conventional coplanar waveguide and that of a thin-film microstrip line. When the TFTL with the proposed structure was fabricated to have a length of ${\lambda}/8$, it showed a loss of less than 1.12 dB at up to 30 GHz. The improvement in the periodic capacitance of the TFTL caused for the propagation constant, ${\beta}$, and the effective permittivity, ${\varepsilon}_{eff}$, to have values higher than those of a device with only a conventional coplanar waveguide and a thin film microstrip line. The TFTL with the proposed structure showed a ${\beta}$ of 0.53~2.96 rad/mm and an ${\varepsilon}_{eff}$ of 22.3~25.3 when operating from 5 to 30 GHz. A highly miniaturized impedance transformer was fabricated on a silicon substrate using the proposed TFTL for application to a low-impedance transformation for broadband. The size of the impedance transformer was 0.01 mm2, which is only 1.04% of the size of a transformer fabricated using a conventional coplanar waveguide on a silicon substrate. The impedance transformer showed excellent RF performance for broadband.

Multi-mode Planar Waveguide Fabricated by a (110) Silicon Hard Master

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1106-1110
    • /
    • 2005
  • We fabricated (110) silicon hard master by using anisotropic wet etching for embossing. The etching chemical for the silicon wafer was a TMAH $25\%$ solution. The anisotropic wet etching produces a smooth sidewall surface and the surface roughness of the fabricated master is about 3 nm. After spin coating an organic-inorganic sol-gel hybrid material on a silicon substrate, we employed hot embossing technique operated at a low pressure and temperature to form patterns on the silicon substrate by using the fabricated master. We successfully fabricated the multi-mode planar optical waveguides showing low propagation loss of 0.4 dB/cm. The surface roughness of embossed patterns was uniform for more than 10 times of the embossing processes with a single hydrophobic surface treatment of the silicon hard master.

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

An Optical Graphene-silicon Resonator Phase Shifter Suitable for Universal Linear Circuits

  • Liu, Changling;Wang, Jianping;Chen, Hongyao;Li, Zizheng
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper describes the construction of a phase shifter with low loss and small volume. To construct it, we use the two graphene layers that are separated by a hexagonal boron nitride (hBN) and embedded in a silicon waveguide. The refractive index of the waveguide is adjusted by applying a bias voltage to the graphene sheet to create an optical phase shift. This waveguide is a compact device that only has a radius of 5 ㎛. It has a phase shift of 6π. In addition, the extinction ratio (ER) is 11.6 dB and the insertion loss (IL) is 0.031 dB. Due to its unique characteristics, this device has great potential in silicon on-chip optical interconnection and all-optical multiple-input multiple-output processing.

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF

A Miniaturized Broadband Impedance Transformer Employing Periodic Ground Structure for Application to Silicon RFIC (주기적 접지구조를 이용한 실리콘 RFIC용 광대역 소형 임피던스 변환기)

  • Young, Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.483-490
    • /
    • 2011
  • Using a coplanar waveguide employing periodic ground structure (PGS) on silicon substrate, a highly miniaturized and broadband impedance transformer was developed for application to low impedance matching in broadband. Concretely, the multi-section transformer was designed using Chebyshev polynomials design technique for ultra broadband operation. Its size was 0.026 $m^2$ on silicon substrate, which was 8.7 % of the one fabricated by conventional coplanar waveguide on silicon substrate. The transformer showed a good RF performance over a ultra broadband from 8 - 49.5 GHz.