DOI QR코드

DOI QR Code

Planar Waveguide Devices for Communication and Sensing Applications

  • Received : 2010.10.19
  • Accepted : 2010.11.15
  • Published : 2010.12.25

Abstract

The paper reviews progress and future prospects of two kinds of planar waveguide devices; they are (a) silica and silicon photonics multi/demultiplexers for communications and signal processing applications, and (b) a novel waveguide spectrometer based on Fourier transform spectroscopy for sensing applications.

Keywords

References

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupledresonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). https://doi.org/10.1364/OL.24.000711
  2. K. Jinguji and M. Oguma, “Optical half-band filters,” IEEE J. Lightwave Technol. 18, 252-259 (2000). https://doi.org/10.1109/50.822800
  3. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, New York, USA, 2006), Chapter 9.
  4. Z. Shi and S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Select. Topics Quantum Electron. 8, 1179-1185 (2002). https://doi.org/10.1109/JSTQE.2002.805967
  5. K. Takada, Y. Inoue, H. Yamada, and M. Horiguchi, “Measurement of phase error distributions in silica-based arrayed-waveguide grating multiplexers by using Fourier transform spectroscopy,” Electron. Lett. 30, 1671-1672 (1994). https://doi.org/10.1049/el:19941113
  6. K. Okamoto, “Evolution of planar waveguide devices: communication and sensing applications,” in Proc. ECIO 2010 (Cambridge, UK, April 2010), paper FrA.
  7. J. J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide rowland circle grating in InGaAsP/InP,” IEEE J. Lightwave Technol. 16, 631-638 (1998). https://doi.org/10.1109/50.664075
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65-71 (2007). https://doi.org/10.1038/nphoton.2006.42
  9. M. Romagnoli, “Silicon on insulator based integrated flexible optical components,” in Proc. ECOC ’07 Workshop (Berlin, Germany, Sep. 2007).
  10. D. Van Thourhout and W. Bogaerts, “Silicon photonics,” in Proc. OFC ’10 (San Diego, CA, USA, Mar. 2010), paper OtuB5.
  11. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in siliconon-insulator photonic wires,” IEEE J. Select. Topics Quantum Electron. 12, 1394-1401 (2006). https://doi.org/10.1109/JSTQE.2006.884088
  12. D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615-1617 (2008). https://doi.org/10.1109/LPT.2008.2002731
  13. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18, 5106-5113 (2010). https://doi.org/10.1364/OE.18.005106
  14. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” IEEE J. Lightwave Technol. 25, 1269-1275 (2007). https://doi.org/10.1109/JLT.2007.893025
  15. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. Van Thourhout, and R. Baets, “Silicon-oninsulator spectral filters fabricated with CMOS technology,” IEEE J. Select. Topics Quantum Electron. 16, 33-44 (2010). https://doi.org/10.1109/JSTQE.2009.2039680
  16. F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Photonics North 2009, Proc. SPIE 7386, 73862 L1-L9 (2009).
  17. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002). https://doi.org/10.1364/AO.41.001343
  18. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D. X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176-18189 (2007). https://doi.org/10.1364/OE.15.018176
  19. D. Noordegraaf, P. M. W. Skovgaard, M. D. Maack, J. B. Hawthorn, R. Haynes, and J. Lagsgaad, “Multi-mode to single-mode conversion in a 61 port photonic lantern,” Opt. Express 18, 4673-4678 (2010). https://doi.org/10.1364/OE.18.004673
  20. M. Florjańczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of slab waveguide spatial heterodyne spectrometer for remote sensing,” Proc. SPIE 7394, 75940 R1-R9 (2010).
  21. K. Okamoto, H. Aoyagi, and K. Takada, “Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide,” Opt. Lett. 35, 2103-2105 (2010). https://doi.org/10.1364/OL.35.002103
  22. T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE J. Lightwave Technol. 15, 2107-2113 (1997). https://doi.org/10.1109/50.641530
  23. T. Kominato, T. Kitoh, K. Katoh, Y. Hibino, and M. Yasu, “Loss characteristics of intersecting silica-based waveguides,” in Proc. Optoelectronics Conf. OEC’ 92 (Makuhari, Japan, Jul. 1992), pp. 138-139.
  24. K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60-61 (2000). https://doi.org/10.1049/el:20000021
  25. G. Fan and Q. H. Liu, “Fast Fourier transform for discontinuous functions,” IEEE Trans. on Antennas and Propagation 52, 461-465 (2004). https://doi.org/10.1109/TAP.2004.823965

Cited by

  1. Laser Zone Melting and microstructure of waveguide coatings obtained on soda-lime glass vol.8, pp.3, 2017, https://doi.org/10.1111/ijag.12267