DOI QR코드

DOI QR Code

An Optical Graphene-silicon Resonator Phase Shifter Suitable for Universal Linear Circuits

  • Liu, Changling (School of Computer and Communication Engineering, University of Science and Technology Beijing) ;
  • Wang, Jianping (School of Computer and Communication Engineering, University of Science and Technology Beijing) ;
  • Chen, Hongyao (School of Computer and Communication Engineering, University of Science and Technology Beijing) ;
  • Li, Zizheng (School of Computer and Communication Engineering, University of Science and Technology Beijing)
  • Received : 2021.08.06
  • Accepted : 2021.11.18
  • Published : 2022.02.25

Abstract

This paper describes the construction of a phase shifter with low loss and small volume. To construct it, we use the two graphene layers that are separated by a hexagonal boron nitride (hBN) and embedded in a silicon waveguide. The refractive index of the waveguide is adjusted by applying a bias voltage to the graphene sheet to create an optical phase shift. This waveguide is a compact device that only has a radius of 5 ㎛. It has a phase shift of 6π. In addition, the extinction ratio (ER) is 11.6 dB and the insertion loss (IL) is 0.031 dB. Due to its unique characteristics, this device has great potential in silicon on-chip optical interconnection and all-optical multiple-input multiple-output processing.

Keywords

Acknowledgement

Fundamental Research Funds for the Central Universities (No. FRF-TP-18-059A1 and No. FRF-BD-2011A); the Open Research Fund of State Key Laboratory of Space Ground Integrated Information Technology (No.2018-SGIIT-KFJJ-TX10).

References

  1. J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O'Brien, and A. Laing, "Universal linear optics," Science 349, 711-716 (2015). https://doi.org/10.1126/science.aab3642
  2. F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, "Benchmarking integrated linear-optical architectures for quantum information processing," Sci. Rep. 7, 15133 (2017). https://doi.org/10.1038/s41598-017-15174-2
  3. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, "Optimal design for universal multiport interferometers," Optica 3, 1460-1465 (2016). https://doi.org/10.1364/OPTICA.3.001460
  4. T. Sato and A. Enokihara, "Ultrasmall design of a universal linear circuit based on microring resonators," Opt. Express 27, 33005-33010 (2019). https://doi.org/10.1364/oe.27.033005
  5. S. Luo, Y. Wang, X. Tong, and Z. Wang, "Graphene-based optical modulators," Nanoscale Res. Lett. 10, 199 (2015). https://doi.org/10.1186/s11671-015-0866-7
  6. G. Denoyer, C. Cole, A. Santipo, R. Russo, C. Robinson, L. Li, Y. Zhou, J. A. Chen, B. Park, F. Boeuf, S. Cremer, and N. Vulliet, "Hybrid silicon photonic circuits and transceiver for 50 gb/s NRZ transmission over single-mode fiber," J. Light. Technol. 33, 1247-1254 (2015). https://doi.org/10.1109/JLT.2015.2397315
  7. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fedeli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, "40 Gbit/s low-loss silicon optical modulator based on a pipin diode," Opt. Express 20, 10591-10596 (2012). https://doi.org/10.1364/OE.20.010591
  8. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, "Recent breakthroughs in carrier depletion based silicon optical modulators," Nanophotonics 3, 229-245 (2014). https://doi.org/10.1515/nanoph-2013-0016
  9. P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y.-K. Chen, "50-Gb/s silicon quadrature phase-shift keying modulator," Opt. Express 20, 21181-21186 (2012). https://doi.org/10.1364/OE.20.021181
  10. F. Fresi, A. Malacarne, V. Sorianello, G. Meloni, P. Velha, M. Midrio, V. Toccafondo, S. Faralli, M. Romagnoli, and L. Poti, "Reconfigurable silicon photonics integrated 16-qam modulator driven by binary electronics," IEEE J. Sel. Top. Quantum Electron. 22, 6100210 (2016).
  11. D. A. B. Miller, "Energy consumption in optical modulators for interconnects," Opt. Express 20, A293-A308 (2012).
  12. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). https://doi.org/10.1109/JQE.1987.1073206
  13. Z. Li, H. Chen, J. Wang, H. Lu, and C. Liu, "Compact design of an optical phase shifter packaged with IST microheater used for integrated photonics," Results Phys. 19, 103644 (2020). https://doi.org/10.1016/j.rinp.2020.103644
  14. G. T. Reed, Silicon photonics: The State Of The Art (Wiley-Interscience, USA. 2008).
  15. M. Liu, X. Yin, and X. Zhang, "Double-layer graphene optical modulator," Nano Lett. 12, 1482-1485 (2012). https://doi.org/10.1021/nl204202k
  16. Y. Hu, M. Pantouvaki, J. V. Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, "Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon," Laser Photonics Rev. 10, 307-316 (2016). https://doi.org/10.1002/lpor.201500250
  17. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, "Graphene electro-optic modulator with 30 GHz bandwidth," Nat. Photonics 9, 511-514 (2015). https://doi.org/10.1038/nphoton.2015.122
  18. H. Dalir, Y. Xia, Y. Wang, and X. Zhang, "Athermal broadband graphene optical modulator with 35 GHz speed," ACS Photonics 3, 1564-1568 (2016). https://doi.org/10.1021/acsphotonics.6b00398
  19. I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, "On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain," Nano Lett. 16, 3005-3013 (2016). https://doi.org/10.1021/acs.nanolett.5b05216
  20. J. Liu, Z. U. Khan, C. Wang, H. Zhang, and S. Sarjoghian, "Review of graphene modulators from the low to the high figure of merits," J. Phys. D: Appl. Phys. 53, 233002 (2020). https://doi.org/10.1088/1361-6463/ab7cf6
  21. K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, "A role for graphene in silicon-based semiconductor devices," Nature 479, 338-344 (2011). https://doi.org/10.1038/nature10680
  22. A. Farmani, A. Mir, and Z. Sharifpour, "Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hanchen effect," Appl. Surf. Sci. 453, 358-364 (2018). https://doi.org/10.1016/j.apsusc.2018.05.092
  23. A. Farmani, "Three-dimensional FDTD analysis of a nano-structured plasmonic sensor in the near-infrared range," J. Opt. Soc. Am. B 36, 401-407 (2019). https://doi.org/10.1364/JOSAB.36.000401
  24. M. A. Baqir, A. Farmani, T. Fatima, M. R. Raza, S. F. Shaukat, and A. Mir, "Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range," Appl. Opt. 57, 9447-9454 (2018). https://doi.org/10.1364/AO.57.009447
  25. A. Farmani and A. Mir, "Graphene sensor based on surface plasmon resonance for optical scanning," IEEE Photonics Technol. Lett. 31, 643-646 (2019). https://doi.org/10.1109/lpt.2019.2904618
  26. V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, "Graphene-silicon phase modulators with gigahertz bandwidth," Nat. Photonics 12, 40-44 (2018). https://doi.org/10.1038/s41566-017-0071-6
  27. Y. Meng, S. Ye, Y. Shen, and Q. Xiao, X. Fu, R. Lu, Y. Liu, M. Gong, "Waveguide engineering of graphene optoelectronics-modulators and polarizers," IEEE Photonics J. 10, 6600217 (2018).
  28. S.-W. Ye, F. Yuan, X.-H. Zou, M. K. Shah, R.-G. Lu, and Y. Liu, "High-speed optical phase modulator based on graphenesilicon waveguide," IEEE J. Sel. Top. Quantum Electron. 23, 76-80 (2017). https://doi.org/10.1109/JSTQE.2016.2545238
  29. F. Zhou, R. Hao, X.-F. Jin, X.-M. Zhang, and E.-P. Li, "A graphene-enhanced fiber-optic phase modulator with large linear dynamic range," IEEE Photonics Technol. Lett. 26, 1867-1870 (2014). https://doi.org/10.1109/LPT.2014.2336660
  30. G. W. Hanson, "Dyadic green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys. 103, 064302 (2008). https://doi.org/10.1063/1.2891452
  31. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, "Terahertz and infrared spectroscopy of gated large-area graphene," Nano Lett. 12, 3711-3715 (2012). https://doi.org/10.1021/nl301496r
  32. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics 4, 611-622 (2010). https://doi.org/10.1038/nphoton.2010.186
  33. Y. Meng, R. Lu, Y. Shen, Y. Liu, and M. Gong, "Ultracompact graphene-assisted ring resonator optical router," Opt. Commun. 405, 73-79 (2017). https://doi.org/10.1016/j.optcom.2017.07.084
  34. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, "Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator," Nano Lett. 15, 4393-4400 (2015). https://doi.org/10.1021/acs.nanolett.5b00630
  35. S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, and Y. Liu, "Electro-absorption optical modulator using dual-graphene-on-graphene configuration," Opt. Express 22, 26173-26180 (2014). https://doi.org/10.1364/OE.22.026173
  36. J. Ctyroky, J. Petracek, P. Kwiecien, I. Richter, and V. Kuzmiak, "Graphene on an optical waveguide: comparison of simulation approaches," Opt. Quantum Electron. 52, 149 (2020). https://doi.org/10.1007/s11082-020-02265-0
  37. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photonics Rev. 6, 47-73 (2012). https://doi.org/10.1002/lpor.201100017
  38. K. Okamoto, Fundamentals of optical waveguides, 3rd ed. (Elsevier Academic, USA. 2006).