Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.4.290

Planar Waveguide Devices for Communication and Sensing Applications  

Okamoto, Katsunari (AiDi Corporation)
Publication Information
Journal of the Optical Society of Korea / v.14, no.4, 2010 , pp. 290-297 More about this Journal
Abstract
The paper reviews progress and future prospects of two kinds of planar waveguide devices; they are (a) silica and silicon photonics multi/demultiplexers for communications and signal processing applications, and (b) a novel waveguide spectrometer based on Fourier transform spectroscopy for sensing applications.
Keywords
Silica waveguide; Silicon photonics; AWG; Echelle grating; Fourier transform spectroscopy;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. Okamoto, H. Aoyagi, and K. Takada, “Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide,” Opt. Lett. 35, 2103-2105 (2010).   DOI   ScienceOn
2 T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE J. Lightwave Technol. 15, 2107-2113 (1997).   DOI   ScienceOn
3 T. Kominato, T. Kitoh, K. Katoh, Y. Hibino, and M. Yasu, “Loss characteristics of intersecting silica-based waveguides,” in Proc. Optoelectronics Conf. OEC’ 92 (Makuhari, Japan, Jul. 1992), pp. 138-139.
4 K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60-61 (2000).   DOI   ScienceOn
5 G. Fan and Q. H. Liu, “Fast Fourier transform for discontinuous functions,” IEEE Trans. on Antennas and Propagation 52, 461-465 (2004).   DOI   ScienceOn
6 D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615-1617 (2008).   DOI
7 Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18, 5106-5113 (2010).   DOI
8 J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” IEEE J. Lightwave Technol. 25, 1269-1275 (2007).   DOI   ScienceOn
9 W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. Van Thourhout, and R. Baets, “Silicon-oninsulator spectral filters fabricated with CMOS technology,” IEEE J. Select. Topics Quantum Electron. 16, 33-44 (2010).   DOI   ScienceOn
10 F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Photonics North 2009, Proc. SPIE 7386, 73862 L1-L9 (2009).
11 J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002).   DOI
12 M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D. X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176-18189 (2007).   DOI
13 D. Noordegraaf, P. M. W. Skovgaard, M. D. Maack, J. B. Hawthorn, R. Haynes, and J. Lagsgaad, “Multi-mode to single-mode conversion in a 61 port photonic lantern,” Opt. Express 18, 4673-4678 (2010).   DOI
14 M. Florjańczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of slab waveguide spatial heterodyne spectrometer for remote sensing,” Proc. SPIE 7394, 75940 R1-R9 (2010).
15 Z. Shi and S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Select. Topics Quantum Electron. 8, 1179-1185 (2002).   DOI
16 A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupledresonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).   DOI   ScienceOn
17 K. Jinguji and M. Oguma, “Optical half-band filters,” IEEE J. Lightwave Technol. 18, 252-259 (2000).   DOI   ScienceOn
18 K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, New York, USA, 2006), Chapter 9.
19 K. Takada, Y. Inoue, H. Yamada, and M. Horiguchi, “Measurement of phase error distributions in silica-based arrayed-waveguide grating multiplexers by using Fourier transform spectroscopy,” Electron. Lett. 30, 1671-1672 (1994).   DOI   ScienceOn
20 K. Okamoto, “Evolution of planar waveguide devices: communication and sensing applications,” in Proc. ECIO 2010 (Cambridge, UK, April 2010), paper FrA.
21 J. J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide rowland circle grating in InGaAsP/InP,” IEEE J. Lightwave Technol. 16, 631-638 (1998).   DOI   ScienceOn
22 F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65-71 (2007).   DOI
23 M. Romagnoli, “Silicon on insulator based integrated flexible optical components,” in Proc. ECOC ’07 Workshop (Berlin, Germany, Sep. 2007).
24 D. Van Thourhout and W. Bogaerts, “Silicon photonics,” in Proc. OFC ’10 (San Diego, CA, USA, Mar. 2010), paper OtuB5.
25 W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in siliconon-insulator photonic wires,” IEEE J. Select. Topics Quantum Electron. 12, 1394-1401 (2006).   DOI   ScienceOn