DOI QR코드

DOI QR Code

주기적 접지구조를 이용한 실리콘 RFIC용 광대역 소형 임피던스 변환기

A Miniaturized Broadband Impedance Transformer Employing Periodic Ground Structure for Application to Silicon RFIC

  • 윤영 (한국해양대학교 전파 공학과)
  • 투고 : 2011.02.02
  • 심사 : 2011.04.21
  • 발행 : 2011.05.31

초록

본 논문에서는 주기적 접지구조(PAGS)를 이용하여 실리콘 RFIC 반도체 기판상에 다단 임피던 스변환기를 제작 평가하였다. 제작된 임피던스변환기의 면적은 종래의 약 8.7 %인 0.026 $mm^2$이며, 8 ~ 49.5 GHz의 범위에서 양호한 RF특성을 보여주었다.

Using a coplanar waveguide employing periodic ground structure (PGS) on silicon substrate, a highly miniaturized and broadband impedance transformer was developed for application to low impedance matching in broadband. Concretely, the multi-section transformer was designed using Chebyshev polynomials design technique for ultra broadband operation. Its size was 0.026 $m^2$ on silicon substrate, which was 8.7 % of the one fabricated by conventional coplanar waveguide on silicon substrate. The transformer showed a good RF performance over a ultra broadband from 8 - 49.5 GHz.

키워드

참고문헌

  1. S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin, and H. Wang "A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18 ${mu}m$ CMOS Technology", IEEE Microw. Wireless Compon. Lett., vol. 15, no.7, pp. 448-450, 2005. https://doi.org/10.1109/LMWC.2005.851552
  2. H. J. Wei, C. Meng, P. Y. Wu, and K. C. Tsung "K-Band CMOS Sub-Harmonic Resistive Mixer with a Miniature Merchand Balun on Lossy Silicon Substrate", IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 40-42, 2008. https://doi.org/10.1109/LMWC.2007.911991
  3. T. P. Wang, and H. Wang "A 71-80 GHz Amplifier Using 0.13 ${\mu}m$ CMOS Technology", IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 685-687, 2007. https://doi.org/10.1109/LMWC.2007.903463
  4. M. K. Mandal, and S. Sanyal, "Reduced-Length Rat-Race Couplers", IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2593-2598, 2007. https://doi.org/10.1109/TMTT.2007.910058
  5. B. Liu, W., Hong, Y. Zhang, H. J. Tang, X. Yin, and K. Wu, "Half Mode Substrate Integrated Waveguide $180^{\circ}$ 3-dB Directional Couplers", IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2586-2592, 2007. https://doi.org/10.1109/TMTT.2007.909749
  6. L. K. Yeung, and Y. E. Wang, "A novel $180^{\circ}$ hybrid using broadside-coupled asymmetric coplanar striplines", IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2625-2630, 2007. https://doi.org/10.1109/TMTT.2007.910067
  7. Y. Yun, T. Fukuda, T. Kunihisa, and O. Ishikawa, "A High performance downconverter MMIC for DBS applications", IEICE Trans. Electron., vol.E84-C, no. 11, pp.1679-1688, 2001.
  8. D. M. Pozar, Microwave Engineering, Addison-Wesley, Reading, 1990.
  9. Y. Yun, "A Highly Miniaturized Multisection Transformer on Silicon RFIC for Application to Low Impedance Transformation in Ultra Broadband", Microwave Journal, vol. 53, no. 12, pp. 76-82, 2010.
  10. 윤영, 김세호, "주기적 접지구조를 이용한 실리콘 RFIC용 초소형 수동소자의 개발", 한국마린엔지니어링학회지, vol. 33, no. 4, pp. 562-568, 2009. https://doi.org/10.5916/jkosme.2009.33.4.562
  11. K. Masu, K. Okada, and H. Ito, "RF Passive Components Using Metal Line on Si CMOS", IEICE Trans. Electron., vol.E89-C, no. 6, pp. 681- 691, 2006. https://doi.org/10.1093/ietele/e89-c.6.681
  12. COLLIN, R. E., Foundations for microwave engineering. McGraw-Hill, 1966.
  13. T. S. D. Cheung, and J. R. Long, "Shielded Passive Devices for Silicon-Based Monolithic Microwave and Millimeter-Wave Integrated Circuits", IEEE Journal of Solid-State Cicuits, vol. 41, pp. 1183-1200, 2006. https://doi.org/10.1109/JSSC.2006.872737
  14. J. R. Long, "Passive Components for silicon RF and MMIC design", IEICE Trans. Electron., vol.E86-C, no. 6, pp. 1022-1031, 2003.
  15. M. Zargari, and D. Su, "Challenges in Designing CMOS Wireless Systemson-a-Chip", IEICE Trans. Electron., vol.E90-C, no. 6, pp. 1142- 1148, 2007. https://doi.org/10.1093/ietele/e90-c.6.1142
  16. R. Lowther, and S. G. Lee, "On-chip Interconnect Lines with patterned Ground Shields", IEEE Microwave and Guided Wave Lett., vol.10, no. 2, pp. 49-51, 2000. https://doi.org/10.1109/75.843097