• Title/Summary/Keyword: Silicon thin wafer

Search Result 222, Processing Time 0.032 seconds

Fabrication of the alumina membrane with nano-sized pore array using the thin film aluminum (박막 알루미늄을 이용한 나노미터 크기의 미세기공 형성)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Lee, Eui-Sik;Kim, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.120-122
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using thin film aluminum deposited on silicon wafer was fabricated. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2M was used for low voltage anodization under 100V, the chromic acid with 0.1M was used for high voltage anodization over 100V. The nano-sized pores with diameter of 60~120nm was obtained by low voltage anodization of 40~90V and those of 200~300nm was obtained by high voltage anodization of 120~160V. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano-structure.

  • PDF

Development of a scratch tester using a two-component force sensor (2축 힘센서를 이용한 스크레치 테스트 개발)

  • 김종호;박연규;이호영;박강식;오희근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1018-1021
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the horizontal forces simultaneously as the probe tip of the equipment approaches to the interface between thin film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ∼ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester. the feasibility test was performed to evaluate the adhesive strength of semiconductor wafer.

  • PDF

Nanotribological characteristics of silicon surfaces modified by IBAD (IBAD로 표면개질된 실리콘표면의 나노 트라이볼로지적 특성)

  • 윤의성;박지현;양승호;공호성;장경영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.127-134
    • /
    • 2001
  • Nano adhesion and friction between a Sj$_3$N$_4$ AFM tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and Si-wafer of different surface roughness were used. Results showed that nano adhesion and friction decreased as the surface roughness increased. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the normal load was low.

  • PDF

Etching-Bonding-Thin film deposition Process for MEMS-IR SENSOR Application (MEMS-IR SENSOR용 식각-접합-박막증착 기반공정)

  • Park, Yun-Kwon;Joo, Byeong-Kwon;Park, Heung-Woo;Park, Jung-Ho;Yom, S.S.;Suh, Sang-Hee;Oh, Myung-Hwan;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2501-2503
    • /
    • 1998
  • In this paper, the silicon-nitride membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PTO layer as a IR detection layer was deposited on the membrane and its characteristics were measured. The attack of PTO layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer can be solved through the method of bonding/etching of silicon wafer. Because the PTO layer of c-axial orientation raised thermal polarization without polling, the more integration capability can be achieved. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by IR detector, and the bonding interface was observed by SEM. The polarization characteristics and the dielectric characteristics of the PTO layer were measured, too.

  • PDF

Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer

  • Hazra, Purnima;Singh, S.K.;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.117-123
    • /
    • 2014
  • The fabrication and characterization of a Si/ZnO thin film heterojunction ultraviolet photodiode has been presented in this paper. ZnO thin film of ~100 nm thick was deposited on <100> Silicon (Si) wafer by atomic layer deposition (ALD) technique. The Photoluminescence spectroscopy confirms that as-deposited ZnO thin film has excellent visible-blind UV response with almost no defects in the visible region. The room temperature current-voltage characteristics of the n-ZnO thin film/p-Si photodiodes are measured under an UV illumination of $650{\mu}W$ at 365 nm in the applied voltage range of ${\pm}2V$. The current-voltage characteristics demonstrate an excellent UV photoresponse of the device in its reverse bias operation with a contrast ratio of ~ 1115 and responsivity of ~0.075 A/W at 2 V reverse bias voltage.

Friction Properties of Carbon Coated Ultra-thin Film using Taguchi Experimental Design (다구찌 실험계획법을 이용한 탄소코팅 초박막의 마찰특성)

  • 안준양;김대은;최진용;신경호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.143-150
    • /
    • 2003
  • Frictional properties of ultra-thin carbon coatings on silicon wafer were investigated based on Taguchi experimental design method. Sensitivity analysis was performed with normal load, relative humidity, deposition process, and coating thickness as the variables. It was found that despite low thickness, the carbon coating resulted in relatively low friction coefficient. Also, the frictional behavior was affected significantly by humidity and normal load.

Polysilicon Thin Film Transistors on spin-coated Polyimide layer for flexible electronics

  • Pecora, A.;Maiolo, L.;Cuscuna, M.;Simeone, D.;Minotti, A.;Mariucci, L.;Fortunato, G.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.261-264
    • /
    • 2007
  • We developed a non self-aligned poly-silicon TFTs fabrication process at two different temperatures on spin-coated polyimide layer above Si-wafer. After TFTs fabrication, the polyimide layer was mechanically released from the Si-wafer and the devices characteristics were compared. In addition self-heating and hot-carrier induced instabilities were analysed.

  • PDF

Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • Sensing characteristics for porous smart particle based on DBR smart particles were reported. Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{++}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Three different surface-modified DBR smart particles have been prepared and used for sensing volatile organic vapors. For different types of surface-modified DBR smart particles, the shift of reflectivity mainly depends on the vapor pressure of analyte even though the surfaces of DBR smart particles are different. However huge difference in the shift of reflectivity depending on the different types of surface-modified DBR smart particles was obtained when the vapor pressures are quite similar which demonstrate a possible sensing application to specify the volatile organic vapors.

High-Density Hollow Cathode Plasma Etching for Field Emission Display Applications

  • Lee, Joon-Hoi;Lee, Wook-Jae;Choi, Man-Sub;Yi, Joon-Sin
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • This paper investigates the characteristics of a newly developed high density hollow cathode plasma(HCP) system and its application for the etching of silicon wafers. We used $SF_6$ and $O_2$ gases in the HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}cm^{-3}$ at a discharge current of 20 rna, Silicon etch rate of 1.3 ${\mu}m$/min was achieved with $SF_6/O_2$ plasma conditions of total gas pressure of 50 mTorr, gas flow rate of 40 seem, and RF power of200W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. We obtained field emitter tips size of less than 0.1 ${\mu}m$ without any photomask step as well as with a conventional photolithography. Our experimental results can be applied to various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this research, we studied silicon etching properties by using the hollow cathode plasma system.

  • PDF

Simply Modified Biosensor for the Detection of Human IgG Based on Protein AModified Porous Silicon Interferometer

  • Park, Jae-Hyun;Koh, Young-Dae;Ko, Young-Chun;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1593-1597
    • /
    • 2009
  • A biosensor has been developed based on induced wavelength shifts in the Fabry-Perot fringes in the visible reflection spectrum of appropriately derivatized thin films of porous silicon semiconductors. Porous silicon (PSi) was generated by an electrochemical etching of silicon wafer using two electrode configurations in aqueous ethanolic HF solution. Porous silicon displayed Fabry-Perot fringe patterns whose reflection maxima varied spatially across the porous silicon. The sensor system studied consisted of a mono layer of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the Fabry-Perot fringes in the white light reflection spectrum from the porous silicon layer. Molecular binding was detected as a shift in wavelength of these fringes.