• 제목/요약/키워드: Silicon solar cell

검색결과 733건 처리시간 0.031초

박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지 (Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell)

  • 김가현
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

레이저 스크라이빙 공정을 이용한 실리콘 태양전지의 측면분리 효과 (Edge Isolation Effects on Silicon Solar Cells using a Laser Scribing Process)

  • 주재홍;정순원;김광호
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.851-856
    • /
    • 2017
  • Research on the edge isolation process of typical polycrystalline silicon solar cells was carried out using laser scribing equipment. The voltage-current characteristics of the solar cell before and after laser scribing were analyzed using a solar simulator. Current density and efficiency increased as the fill factor of the solar cell remained constant after the laser scribing process. The efficiency of the solar cell can be increased in a short time by the edge isolation process performed via a laser scribing process. The polycrystalline silicon solar cell was made into a series electrode, and the efficiency of the solar cell increased because the width of the solar cell was narrowed and the active region was widened by the laser scribing process.

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

실리콘 태양전지의 기술현황 및 전망 (Technology Trends and Prospects of Silicon Solar Cells)

  • 박철민;조재현;이영석;박진주;주민규;이윤정;이준신
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

Advances in Crystalline Silicon Solar Cell Technology

  • Lee, Hae-Seok;Park, Hyomin;Kim, Donghwan;Kang, Yoonmook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.82-82
    • /
    • 2015
  • Industrial crystalline silicon (c-Si) solar cells with using a screen printing technology share the global market over 90% and they will continue to be the same for at least the next decade. It seems that the $2^{nd}$ generation and the $3^{rd}$ generation technologies have not yet demonstrated competitiveness in terms of performance and cost. In 2014, new world record efficiency 25.6% (Area-$143.7cm^2$, Voc-0.740V, $Jsc-41.8mA/cm^2$, FF-0.827) was announced from Panasonic and its cell structure is Back Contact $HIT^*$ c-Si solar cell. Here, amorphous silicon passivated contacts were newly applied to back contact solar cell. On the other hand, 24.9% $TOPCon^{**}$ cell was announced from Fraunhofer ISE and its key technology is an excellent passivation quality applying tunnel oxide (<2 nm) between metal and silicon or emitter and base. As a result, to realize high efficiency, high functional technologies are quite required to overcome a theoretical limitation of c-Si solar cell efficiency. In this presentation, Si solar cell technology summarized in the International Technology Roadmap for Photovoltaics ($^{***}ITRPV$ 2014) is introduced, and the present status of R&D associated with various c-Si solar cell technologies will be reviewed. In addition, national R&D projects of c-Si solar cells to be performed by Korea University are shown briefly.

  • PDF

Influence of KOH Solution on the Passivation of Al2O3 Grown by Atomic Layer Depostion on Silicon Solar Cell

  • 조영준;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.299.2-299.2
    • /
    • 2013
  • We investigated the potassium remaining on a crystalline silicon solar cell after potassium hydroxide (KOH) etching and its effect on the lifetime of the solar cell. KOH etching is generally used to remove the saw damage caused by cutting a Si ingot; it can also be used to etch the rear side of a textured crystalline silicon solar cell before atomic layer-deposited Al2O3 growth. However, the potassium remaining after KOH etching is known to be detrimental to the efficiency of Si solar cells. In this study, we etched a crystalline silicon solar cell in three ways in order to determine the effect of the potassium remnant on the efficiency of Si solar cells. After KOH etching, KOH and tetramethylammonium hydroxide (TMAH) were used to etch the rear side of a crystalline silicon solar cell. To passivate the rear side, an Al2O3 layer was deposited by atomic layer deposition (ALD). After ALD Al2O3 growth on the KOH-etched Si surface, we measured the lifetime of the solar cell by quasi steady-state photoconductance (QSSPC, Sinton WCT-120) to analyze how effectively the Al2O3 layer passivated the interface of the Al2O3 layer and the Si surface. Secondary ion mass spectroscopy (SIMS) was also used to measure how much potassium remained on the surface of the Si wafer and at the interface of the Al2O3 layer and the Si surface after KOH etching and wet cleaning.

  • PDF

SiNx passivation에 따른 Solar Cell의 효율향상에 관한 연구 (A Study of High-efficiency me-silicon solar cells for SiNx passivation)

  • 고재경;임동건;김도영;박성현;박중현;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.964-967
    • /
    • 2002
  • The effectiveness of silicon nitride SiNx surface passivation is investigated and quantified. This study adopted single-layer antireflection (SLAR) coating of SiNx for efficiency improvement of solar cell. The silicon nitride films were deposited by means of plasma enhanced chemical vapor deposition (PECVD) in planar coil reactor. The process gases used were pure ammonia and a mixture of silane and helium. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment. This films obtained were analyzed in term of hydrogen content, refractive index for gas flow ratio $(NH_3/SiH_4)$, and efficiency of solar cell. The polycrystalline silicon solar cells passivated by silicon nitride shows efficiency above 12.8%.

  • PDF

실리콘 웨이퍼 비저항에 따른 Dopant-Free Silicon Heterojunction 태양전지 특성 연구 (The Influence of the Wafer Resistivity for Dopant-Free Silicon Heterojunction Solar Cell)

  • 김성해;이정호
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.185-190
    • /
    • 2018
  • Dopant-free silicon heterojunction solar cells using Transition Metal Oxide(TMO) such as Molybdenum Oxide($MoO_X$) and Vanadium Oxide($V_2O_X$) have been focused on to increase the work function of TMO in order to maximize the work function difference between TMO and n-Si for a high-efficiency solar cell. One another way to increase the work function difference is to control the silicon wafer resistivity. In this paper, dopant-free silicon heterojunction solar cells were fabricated using the wafer with the various resistivity and analyzed to understand the effect of n-Si work function. As a result, it is shown that the high passivation and junction quality when $V_2O_X$ deposited on the wafer with low work function compared to the high work function wafer, inducing the increase of higher collection probability, especially at long wavelength region. the solar cell efficiency of 15.28% was measured in low work function wafer, which is 34% higher value than the high work function solar cells.

습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조 (Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process)

  • 노민호;이준규;안영수;여정구;이진석;강기환;조철희
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.697-702
    • /
    • 2019
  • In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.

태양전지용 규소의 texture etching에 미치는 초음파의 영향 (The effect of the ultrasonic wave on the texturisation of the silicon crystal-line solar cell)

  • 김정민;김영관
    • 한국결정성장학회지
    • /
    • 제13권6호
    • /
    • pp.261-266
    • /
    • 2003
  • 결정질 규소를 이용한 태양전지의 제조에 필요한 texture 식각 공정에 초음파를 적용하였다. 이 결과 $60^{\circ}C$에서 초음파를 적용하여 식각된 규소 기판으로 제조된 태양전지의 광전변환효율이 기존의 방식대로 $70^{\circ}C$에서 초음파 없이 식각된 규소 기판으로 제조된 태양전지의 광전변환효율보다 높았다. 이 결과는 규소를 이용한 태양전지의 제조에 필요한 식각공정에서 초음파를 적용하면 공정 온도를 낮출 수 있고 또한 사용되는 고가의 용액을 줄일 수 있어 전체적으로 태양전지의 제조 가격을 낮출 수 있는 가능성을 보여준다.