• Title/Summary/Keyword: Silicon oxynitride

Search Result 62, Processing Time 0.027 seconds

Properties of the oxynitride films formed by thermal reoxidation in $N_2{O}$ gas ($N_2{O}$가스로 재산화시킨 oxynitride막의 특성)

  • 김태형;김창일;최동진;장의구
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 1994
  • Properties of oxynitride films reoxidized by $N_2{O}$ gas after thermal oxidation and $N_2{O}$ oxide films directly oxidized by using $N_2{O}$ gas on the bare silicon wafer have been studied. From the AES analysis, nitrogen pile-up at the interface of Si/oxynitride and Si/$N_2{O}$ oxide has observed. $N_2{O}$ oxide and oxynitride films have the self-limited characteristics. Therefore, it will be possible to obtain ultra-thin films. Nitrogen pile-up at the interfaces of Si/oxynitride and Si/$N_2{O}$ oxide strengthens film structure and improves dielectric reliability. Although fixed charge densities and interface trap densities of N20 oxide and oxynitride films have somewhat higher than those of thermal $SiO_2{O}$, $N_2{O}$ oxide and oxynitride films showed improved I-V characteristics and constant current stress.

  • PDF

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

A Study on Alkali ion-Sensitivity of $Si_{x}O_{y}N_{z}$ Fabricated by Low Pressure Chemical Vapor Deposition (저압화학기상 성장법으로 제작된 $Si_{x}O_{y}N_{z}$의 알칼리이온 감지성에 관한 연구)

  • Shin, P.K.;Lee, D.C.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 1997
  • Using $SiCl_{2}H_{2}$, $NH_{3}$ and $N_{2}O$, we have fabricated silicon oxynitride ($Si_{x}O_{y}N_{z}$) layers on thermally oxidized silicon wafer by low pressure chemical vapor deposition. Three different compositions were achieved by controlling gas flow ratios($NH_{3}/N_{2}O$)) to 0.2, 0.5 and 2 with fixed gas flow of $SiCl_{2}H_{2}$. Ellipsometry and high frequency capacitance-voltage(HFCV) measurements were adapted to investigate the difference of the refractive index, dielectric constant, and composition, respectively. Regardless of nitride content, silicon oxynitrides had similar stability to silicon nitrides. The relative standing of alkali ion sensitivity in silicon oxynitride layers was influenced by nitride content. The better alkali ion-sensitivity was achieved by increasing oxide content in bulk of silicon oxynitrides.

  • PDF

Study on the ultra thin film of silicon oxyinitride deposited by plasma - assisted $N_2O$ oxidation in ICP-CVD reactor (ICP-CVD 반응기 내에서 $N_2O$ 플라즈마 산화법을 이용하여 증착된 ultra thin silicon oxynitride films 에 관한 연구)

  • Hwang, Sung-Hyun;Jung, Sung-Wook;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.161-162
    • /
    • 2006
  • Scaling rules for TFT application devices have led to the necessity of ultra thin dielectric films and high-k dielectric layers. In this paper, The advantages of high concentration of nitrogen in silicon oxide layer deposited by using $N_2O$ in Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) reported about Ellipsometric measurement, Capacitance-Voltage characterization and processing conditions.

  • PDF

A study on the characteristics of the OXYNITRIDE film deposited by Laser CVD (Laser CVD법에 의해 퇴적된 OXYNITRIDE막의 특성에 관한 고찰)

  • Kim, C.D.;Shin, S.W.;Jung, M.N.;Kim, J.K.;Sung, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1428-1430
    • /
    • 1996
  • Thin Silicon oxynitride(SiON) films have been chemically deposited using 193nm ArF Excimer Laser CVD, with $Si_{2}H_{8}$, $N_{2}O$, and $NH_3$ as the reactive gases and $N_2$ as the carrier gas. Experimental results show that deposition rate and refractive index have a strong dependence on substrate temperature, chamber pressure, gas ratio, laser power and laser beam height. Electrical characterization of oxynitride films demonstrates that for $NH_{3}/N_{2}O$ flow ratios ranging from 0.25 to 1, the leakage currents, the interface trap density and the capacitances (dielect ric constant) increase and the dielectric breakdown fields decrease

  • PDF

Dependence of cation ratio in Oxynitride Glasses on the plasma etching rate

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • Polycrystalline materials suchas yttria and alumina have been applied as a plasma resisting material for the plasma processing chamber. However, polycrystal line material may easily generate particles and the particles are sources of contamination during the plasma enhanced process. Amorphous material can be suitable to prevent particle generation due to absence of grain-boundaries. We manufactured nitrogen-containing $SiO_2-Al_2O_3-Y_2O_3$ based glasses with various contents of silicon and fixed nitrogen content. The thermal properties, mechanical properties and plasma etching rate were evaluated and compared for the different composition samples. The plasma etching behavior was estimated using XPS with depth profiling. From the result, the plasma etching rate highly depends on the silicon content and it may results from very low volatile temperature of SiF4 generated during plasma etching. The silicon concentration at the plasma etched surface was very low besides the concentration of yttrium and aluminum was relatively high than that of silicon due to high volatile temperature of fluorine compounds which consisted with aluminum and yttrium. Therefore, we conclude that the samples having low silicon content should be considered to obtain low plasma etching rate for the plasma resisting material.

  • PDF

SiON/SiO2 Multilayer Deposited by PECVD for Low-Loss Waveguides (저손실 광도파로 제작을 위해 PECVD 법에 의해 증착된 SiON/SiO2 다층박막)

  • 김용탁;김동신;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.197-201
    • /
    • 2004
  • SiO$_2$ and SiON thick films were deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique on silicon wafer (100) using SiH$_4$ and $N_2$O as precursor gases. In this work, the influence of rf power, and rf bias power on the optical and physical properties of SiO$_2$ and SiON thick films is presented. The refractive index decreases with increasing rf power, and rf bias power. The refractive index of the films varied from 1.4493 to 1.4952 at wavelength at 1552 nm, with increasing rf power, the nitrogen content decreases while the oxygen content increases, in a manner that the O/N ratio increases approximately linearly.

Properties of the oxynitride films formed by thermal oxidation in $N_2O$ ($N_2O$ 가스에서 열산화에 의해 형성된 oxynitride막의 특성)

  • Bae, Sung-Sig;Lee, Cheol-In;Choi, Hyun-Sik;Seo, Yong-Jin;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1295-1297
    • /
    • 1993
  • Properties of oxynitride films oxidized by $N_2O$ gas after thermal oxidation and $N_2O$ oxide films directly oxidized using $N_2O$ gas on the bare silicon wafer have been studied. Through the AES analysis, Nitrogen pile-up at the interface of Si/oxynitride and Si/$N_2O$ oxide has observed. Also, it could be presumed that there are differences in the mechanism of the growth of film by observing film growth. $N_2O$ oxide and oxynitride films have the self-limited characteristics. Therefore, it will be possible to obtain ultra-thin films. Nitrogen pile-up at the interfaces Si/oxynitride and Si/$N_2O$ oxide strengthens film structure and improves dielectric reliability. Although fixed charge densities and interface trap densities of $N_2O$ oxide and oxynitride films has somewhat higher than those of thermal $SiO_2,\;N_2O$ oxide and oxynitride films showed improved I-V characteristics and constant current stress.

  • PDF

Low Index Contrast Planar SiON Waveguides Deposited by PECVD (PECVD 법에 의해 제작된 저굴절률 차이 평판 SiON광도파로)

  • Kim, Yong-Tak;Yoon, Seok-Gyu;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.178-181
    • /
    • 2005
  • Silicon oxynitride (SiON) layers deposited upon a $SiO_2/Si$ buffer layer placed upon silicon wafers have been obtained by using PECVD from $SiH_4,\;N_2O$, and $N_2$. It can be seen that the refractive index, measured by using a prism coupler, for the SiON films can be varied between 1.4480 and 1.4958 at a wavelength of 1552 nm by changing the process parameters. Optical planar waveguides with a thickness of $6{\mu}m$ and a refractive index contrast ($\Delta$n) of $0.36\% have been deposited. Also, etching experiments were performed using ICP dry etching equipment on thick SiON films grown onto Si substrates covered by a thick $SiO_2$ buffer layer. A polarization maintaining single-mode fiber was used for the input and a microscope objective for the output at $1.55{\mu}m$. As a result, a low index contrast SiON based waveguide is fabricated with easily adjustable refractive index of core layer. It illustrates that the output intensity mode is a waveguiding single-mode.

Characteristics on Silicon Oxynitride Stack Layer of ALD-Al2O3 Passivation Layer for c-Si Solar Cell (결정질 실리콘 태양전지 적용을 위한 ALD-Al2O3 패시베이션 막의 산화질화막 적층 특성)

  • Cho, Kuk-Hyun;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.233-237
    • /
    • 2015
  • Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) $Al_2O_3$. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect $Al_2O_3$ passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD $Al_2O_3$ film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. $Al_2O_3$/SiON stacks coated at $400^{\circ}C$ showed higher lifetime values in the as-stacked state. In contrast, a high quality $Al_2O_3$/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of $200^{\circ}C$ after the firing process. The best lifetime was achieved with stack films fired at $850^{\circ}C$. These results demonstrated the potential of the $Al_2O_3/SiON$ passivated layer for crystalline silicon solar cells.