• Title/Summary/Keyword: Silicon on Insulator wafer

Search Result 77, Processing Time 0.026 seconds

Analyses Thermal Stresses for Microaccelerometer Sensors using SOI Wafer(I) (SOI웨이퍼를 이용한 마이크로가속도계 센서의 열응력해석(I))

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.36-42
    • /
    • 2001
  • This paper deals with finite element analyses of residual stresses causing popping up which are induced in micromachining processes of a microaccelerometer sensors. The paddle of the micro accelerometer sensor is designed symmetric with respect to the direction of the beam. After heating the tunnel gap up to 100 degree and get it through the cooling process and the additional beam up to 80 degree and get it through the cooling process. We learn the thermal internal stresses of each shape and compare the results with each other, after heating the tunnel gap up to 400 degree during the Pt deposition process. Finally we find the optimal shape which is able to minimize the internal stresses of microaccelerometer sensor. We want to seek after the real cause of this pop up phenomenon and diminish this by change manufacturing processes of microaccelerometer sensor by electrostatic force.

  • PDF

Characterization of SOI Wafers Fabricated by a Modified Direct Bonding Technology

  • Kim, E.D.;Kim, S.C.;Park, J.M.;Kim, N.K.;Kostina, L.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.47-51
    • /
    • 2000
  • A modified direct bonding technique employing a wet chemical deposition of $SiO_2$ film on a wafer surface to be bonded is proposed for the fabrication of Si-$SiO_2$-Si structures. Structural and electrical quality of the bonded wafers is studied. Satisfied insulating properties of interfacial $SiO_2$ layers are demonstrated. Elastic strain caused by surface morphology is investigated. The diminution of strain in the grooved structures is semi-quantitatively interpreted by a model considering the virtual defects distributed over the interfacial region.

  • PDF

Variable Optical Attenuator using Parallel Plate Electrostatic Actuator (평행 평판 정전형 구동기를 이용한 가변 광 감쇠기)

  • 김태엽;허재성;문성욱;신현준;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.448-452
    • /
    • 2004
  • The micromachined variable optical attenuator(VOA) was presented in the paper. The VOA has two single mode fiber(SMF) aligned with free space and symmetric parallel plate actuator with microshutter, which can control a amount of light by driving the actuator. In the paper, analysis on driving performances of the VOA was performed and can be reduced threshold voltage through the decreasing displacement actuating range. This paper presents a VOA that is fabricated using bosch deep silicon etching process with silicon on insulator(SOD wafer. The VOA consists of driving electrode, ground electrode, actuating microshutter, and mechanical stopper. In this VOA, actuating shutter is driven by electrostatic force and the threshold voltage is close to 28V, 46V come along with the spring width of 5${\mu}{\textrm}{m}$, 7${\mu}{\textrm}{m}$ respectively. Attenuation range is measured from 2.4㏈ to 16.7㏈.

Fabrication of a Silicon Hall Sensor for High-temperature Applications (고온용 실리콘 홀 센서의 제작)

  • 정귀상;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.514-519
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$as a dielectrical isolation layer a SDB SOI Hall sensor without pn junction has been fabricated on the Si/ $SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to 30$0^{\circ}C$ the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm$6.7$\times$10$_{-3}$ and $\pm$8.2$\times$10$_{-4}$$^{\circ}C$ respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and high-temperature operation.

  • PDF

Fabrication of a Silicon Hall Sensor for High-temperature Applications (고온용 실리콘 홀 센서의 제작)

  • Chung, Gwiy-Sang;Ryu, Ji-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.29-33
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than ${\pm}6.7{\times}10^{-3}/^{\circ}C$ and ${\pm}8.2{\times}10^{-4}/^{\circ}C$, respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and high-temperature operation.

  • PDF

Wafer-Level Fabrication of a Two-Axis Micromirror Driven by the Vertical Comb Drive (웨이퍼 레벨 공정이 가능한 2축 수직 콤 구동 방식 마이크로미러)

  • Kim, Min-Soo;Yoo, Byung-Wook;Jin, Joo-Young;Jeon, Jin-A;Park, Il-Heung;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.148-149
    • /
    • 2007
  • We present the design and fabrication prcoess of a two-axis tilting micromirror device driven by the electrostatic vertical comb actuator. A high aspect-ratio comb actuator is fabricated by multiple DRIE process in order to achieve large scan angle. The proposed fabrication process enables a mirror to be fabricated on the wafer-scale. By bonding a double-side polished (DSP) wafer and a silicon-on-insulator (SOI) wafer together, all actuators on the wafer are completely hidden under the reflectors. Nickel lines are embedded on a Pyrex wafer for the electrical access to numerous electrodes of mirrors. An anodic bonding step is implemented to contact electrical lines with ail electrodes on the wafer at a time. The mechanical angle of a fabricated mirror has been measured to be 1.9 degree and 1.6 degree, respectively, in the two orthogonal axes under driving voltages of 100 V. Also, a $8{\times}8$ array of micromirrors with high fill-factor of 70 % is fabricated by the same fabrication process.

  • PDF

VOA fabrication with symmetric actuator (대칭구동기를 갖는 가변 광 감쇄기의 제작)

  • Kim, Tae-Youp;Hur, Jae-Sung;Moon, Sung;Shin, Hyun-Joon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1912-1913
    • /
    • 2003
  • This paper presents a variable optical attenuator (VOA) that is fabricated using bosch deep silicon etching process [1] with silicon-on- insulator (SOI) wafer. The VOA consists of driving electrode, ground electrode, actuating mirror, and mechanical slower. In this VOA, actuating mirror is driven by electrostatic force [2] and the pull-in voltage is close to 13V, 28 V, 46V come along with the spring width of $3{\mu}m,\;5{\mu}m,\;7{\mu}m$ respectively.

  • PDF

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

A Study on the Electrical Characterization of Top-down Fabricated Si Nanowire ISFET (Top-down 방식으로 제작한 실리콘 나노와이어 ISFET 의 전기적 특성)

  • Kim, Sungman;Cho, Younghak;Lee, Junhyung;Rho, Jihyoung;Lee, Daesung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.128-133
    • /
    • 2013
  • Si Nanowire (Si-NW) arrays were fabricated by top-down method. A relatively simple method is suggested to fabricate suspended silicon nanowire arrays. This method allows for the production of suspended silicon nanowire arrays using anisotropic wet etching and conventional MEMS method of SOI (Silicon-On-Insulator) wafer. The dimensions of the fabricated nanowire arrays with the proposed method were evaluated and their effects on the Field Effect Transistor (FET) characteristics were discussed. Current-voltage (I-V) characteristics of the device with nanowire arrays were measured using a probe station and a semiconductor analyzer. The electrical properties of the device were characterized through leakage current, dielectric property, and threshold voltage. The results implied that the electrical characteristics of the fabricated device show the potential of being ion-selective field effect transistors (ISFETs) sensors.