• Title/Summary/Keyword: Silicon crystal

Search Result 674, Processing Time 0.024 seconds

배분력의 정량적인 분석을 통한 단결정실리콘의 나노패턴 연성가공법 연구 (Study on Ductile Machining Technology for Manufacturing Nano-Patterns on Single Crystal Silicon through Quantitative Analysis of Thrust Force)

  • 최대희;전은채;윤민아;김광섭;제태진;정준호
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.11-16
    • /
    • 2016
  • Lithography techniques are generally used to manufacture nano-patterns on silicon, however, it is difficult to make a V-shaped pattern using these techniques. Although silicon is a brittle material, it can be treated as a ductile material if mechanically machined at extremely low force scale. The manufacturing technique of nano-patterns on single crystal silicon using a mechanical method was developed in this study. First, the linear pattern was machined on the silicon with increasing thrust force. Then, the correlation between measured cutting force and machined pattern was analyzed. Based on the analysis, the critical thrust force was quantitatively determined, and then the silicon was machined at a force lower than the critical thrust force. The machined pattern was observed using SEM and AFM to check for the occurrence of brittle fractures. Finally, the sharp V-shaped nano-pattern was manufactured on the single crystal silicon.

나노스크래치 공정에서 단결정 실리론 및 파이렉스 7740 의 나노변형거동 (Nanodeformation Behaviors of the Single Crystal Silicon and the Pyrex glass 7740 during Nanoscratch)

  • 신용래;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.363-366
    • /
    • 2003
  • In nanomachining processes, chemical effects are more dominant factor compared with physical deformation. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between the diamond tip and the surface. On the contrary, in case of chemically stable materials, such as ceramics or glasse, the surface protuberance are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with the surface protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740).

  • PDF

이종기판을 사용한 저온에서의 실리콘 박막 용액 성장법 (Low temperature solution growth of silicon on foreign substrates)

  • Soo Hong Lee;Martin A. Green
    • 한국결정성장학회지
    • /
    • 제4권1호
    • /
    • pp.42-45
    • /
    • 1994
  • 금 비스무스 용매를 사용하여 실리콘 박막을 사파이어, 보로실리케이트 그라스 기판상에 성장시켰다. 사파이어의 경우 $380~460^{\cire}C$ 에서 14 $\mu\textrm{m}$ 두께의 실리콘막이 성장되었으며, 그라스 기판의 경우 $420~520^{\circ}C$ 온도 범위에서 수백 $\mu\textrm{m}$ 사이즈의 큰 결정립이 형성되었다. 이결과는 저가의 박막태양전지를 제조하는데 응용될 것으로 사료된다.

  • PDF

사파이어 기판을 사용한 태양전지용 실리콘 박막의 저온액상 에피탁시에 관한 연구 (Low temperature growth of silicon thin film on sapphire substrate by liquid phase epitaxy for solar cell application)

  • Soo Hong Lee;Martin A. Green
    • 한국결정성장학회지
    • /
    • 제4권2호
    • /
    • pp.131-133
    • /
    • 1994
  • $[0.5 \mu\textrm{m} (100) Si/(1102) sapphire]$ 기판상에 액상 에피탁시 방법으로 태양전지용 실리콘 박막형성을 시도하여, 평균 14 $\mu\textrm{m}$ 두께의 실리콘 박막을 아주 낮은 온도범위 $(380^{\circ}C~460^{\circ}C)$에서 성장시켰다.

  • PDF

실리콘 단결정 성장 기술개발 동향 (Technical Trend of Silicon Single Crystal Growth)

  • 조한식
    • 한국결정성장학회지
    • /
    • 제1권1호
    • /
    • pp.117-126
    • /
    • 1991
  • 실리콘 단결정은 반도체 소자 제조에 널리 쓰이는 중요한 재료로서 이 결정 성장 기술은 결정의 고품질화, 대구경화를 이룩하기 위하여 꾸준히 발전되어 왔다. 본 보는 생산성의 경제적인 효율 측면에서 각종 결정 인상 기술이 장, 단점을 간략히 소개하고, 이 기술 및 공정의 장래에 대하여 기술하였다.

  • PDF

Oxygen Transport in Highly Boron Doped Silicon Melt

  • Terashima, K.;Abe, K.;Maeda, S.;Nakanishi, H.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.207-209
    • /
    • 1997
  • Influences of boron addition on the oxygen solubiligy in silicon melt and the amount of evaporation loss from the melt surface were investigated. It has been found the oxygen concentration increases from 2${\times}$1018 to 4${\times}$1018 atoms/㎤. The amount of evaporation loss was found to vary widely depending on the melt temperature. The amount of SiO evaporating form boron doped (∼102121 atoms/㎤) silicon melt at 1550$^{\circ}C$ is about twice as much as the value of non-doped melt.

  • PDF

Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.398-402
    • /
    • 2011
  • In this paper, we have proposed a principle to design wideband, low dispersion and temperature stabilized slow light structure in slotted photonic crystal waveguide (SPCW). The infiltration of the silicon photonic crystal with polymer will enhance the slow light and increase the group index, whereas the different signs of thermo-optic coefficients of polymer and silicon make the proposed structure stable on temperature variation over $60^{\circ}C$ and improves the group index-bandwidth products of the designed structure. The SPCW structure is modified to maximize the slow light effect and minimize the dependence of the group index and hence the group velocity dispersion to temperature.

Compact and Temperature Independent Electro-optic Switch Based on Slotted Silicon Photonic Crystal Directional Coupler

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.282-287
    • /
    • 2012
  • In this paper, we have proposed a principle to design a compact and temperature independent electro-optic switch based on a slotted photonic crystal directional coupler (SPCDC). Infiltration of the slotted silicon photonic crystal with polymer enhances the slow light and decreases the switching length, whereas the different signs of thermo-optic coefficients of the polymer and silicon make the proposed switch stable within $25^{\circ}C$ to $85^{\circ}C$ temperature range. The SPCDC structure is modified to increase poling efficiency of the polymer in the slot and to flatten the dispersion diagram of the even mode to minimize the switching length.

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • 제25권2호
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF

Nucleation and growth of vacancy agglomeration in CZ silicon crystals

  • Ogawa, Tomoya;Ma, Minya
    • 한국결정성장학회지
    • /
    • 제9권3호
    • /
    • pp.286-288
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction $X_{B}$, the degree for supersaturation $\sigma$ is given by $[X_{B}-X_{BS}]/X_{BS}=X_{B}/X_{BS}-1=ln(X_{B}/X_{BS})$ because $X_{B}/X_{BS}$ is nearly equal to unity. Here, $X_{BS}$ is the saturated concentration of vacancies in a silicon crystal and $X_{B}$ is a little larger than $X_{BS}$. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}_{B}={\mu}^{0}+RT$ ln $X_{B}+RT$ ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}^{0}$ is an ideal chemical potential of the vacancies and ${\gamma}$ is and adjustable parameter similar to the activity of solute in a solute in a solution. Thus, ${\sigma}(T)$ is equal to $({\mu}_{B}-{\mu}_{BS})/RT$. Driving force of nucleation for the vacancy agglomeration will be proportional to the chemical potentialdifference $({\mu}_{B}-{\mu}_{BS})/RT$ or ${\sigma}(T)$, while growth of the vacancy agglomeration is proportaional to diffusion of the vacancies and grad ${\mu}_{B}$.

  • PDF