Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.4.398

Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides  

Aghababaeian, Hassan (Faculty of Electrical Engineering, Iran University of Science and Technology)
Vadjed-Samiei, Mohammad-Hashem (Faculty of Electrical Engineering, Iran University of Science and Technology)
Granpayeh, Nosrat (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Publication Information
Journal of the Optical Society of Korea / v.15, no.4, 2011 , pp. 398-402 More about this Journal
Abstract
In this paper, we have proposed a principle to design wideband, low dispersion and temperature stabilized slow light structure in slotted photonic crystal waveguide (SPCW). The infiltration of the silicon photonic crystal with polymer will enhance the slow light and increase the group index, whereas the different signs of thermo-optic coefficients of polymer and silicon make the proposed structure stable on temperature variation over $60^{\circ}C$ and improves the group index-bandwidth products of the designed structure. The SPCW structure is modified to maximize the slow light effect and minimize the dependence of the group index and hence the group velocity dispersion to temperature.
Keywords
Slow light; Slotted photonic crystal waveguide; Dispersion; Temperature independent; Photonic devices;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, "Controlling temperature dependence of silicon waveguide using slot structure," Opt. Express 16, 1645-1652 (2008).   DOI
2 M. Kim, J. J. Ju, S. K. Park, J. Y. Shim, and M. H. Lee, "Control of linear chirps in waveguide bragg gratings by applying designed core profiles," IEEE J. Lightwave Technol. 27, 4809-4813 (2009).   DOI   ScienceOn
3 http://www.chemoptics.co.kr/.
4 Y. Chung, J. Song, W. Han, and U. Paek, "New compensation method for temperature sensitivity of fiber Brags grating using bi-metal," J. Opt. Soc. Korea 7, 84-88 (2003).   과학기술학회마을   DOI   ScienceOn
5 C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. C. McPhedran, B. J. Eggleton, L. O'Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, "Temperature stabilization of optofluidic photonic crystal cavities," Appl. Phys. Lett. 94, 231114-1-231114-3 (2009).   DOI   ScienceOn
6 L. Juntao, T. P.White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 16, 6227-6232 (2008).   DOI
7 J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008).   DOI
8 T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, and A. Jen, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Appl. Phys. Lett. 92, 92-94 (2008).
9 J. H. Wülbern, A. Petrov, and M. Eich, "Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator," Opt. Express 17, 304-313 (2009).   DOI
10 J. Wu, Y. Li, C. Peng, and Z. Wang, "Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration," Opt. Comm. 284, 2149-2152 (2011).   DOI   ScienceOn
11 F. Y. M. Chan, M. J. Kim, and B. H. Lee, "Add/drop filter for CWDM systems using side-coupled long-period fiber gratings," J. Opt. Soc. Korea 9, 135-139 (2005).   과학기술학회마을   DOI   ScienceOn
12 W. C. Kim and D. W. Park, "Analysis of temperature effects on raman silicon photonic devices," J. Opt. Soc. Korea 12, 288-297 (2008).   과학기술학회마을   DOI   ScienceOn
13 D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultra compact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).   DOI   ScienceOn
14 D. M. Beggs, T. P. White, L. Cairns, L. O'Faolain, and T. F. Krauss, "Ultrashort photonic crystal optical switch actuated by microheater," IEEE Photon. Technol. Lett. 21, 24-26 (2009).   DOI   ScienceOn
15 S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981-2983 (2007).   DOI   ScienceOn
16 M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, "Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration," Opt. Express 17, 1628-1635 (2009).   DOI
17 http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.
18 J. Wu, Y. Li, C. Peng, and Z. Wang, "Wideband and low dispersion slow light in slotted photonic crystal waveguide," Opt. Comm. 283, 2815-2819 (2010).   DOI   ScienceOn
19 T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40, 2666-2670 (2007).   DOI   ScienceOn
20 T. Baba, "Slow light in photonic crystals," Nature 2, 465-473 (2008).
21 T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007).   DOI   ScienceOn
22 M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).   DOI
23 T. F. Krauss, "Why do we need slow light," Nature Photon. 2, 448-450 (2008).   DOI
24 M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004).   DOI   ScienceOn
25 A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004).   DOI   ScienceOn