• Title/Summary/Keyword: Silicon carbide coatings

Search Result 18, Processing Time 0.031 seconds

Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique

  • Kim, Jong-Ho;Lee, Hyeon-Keun;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.518-523
    • /
    • 2008
  • The mechanical properties of silicon carbide deposited by chemical vapor deposition process onto a graphite substrate are studied using nanoindentation techniques. The silicon carbide coating was fabricated in a chemical vapor deposition process with different microstructures and thicknesses. A nanoindentation technique is preferred because it provides a reliable means to measure the mechanical properties with continuous load-displacement recording. Thus, a detailed nanoindentation study of silicon carbide coatings on graphite structures was conducted using a specialized specimen preparation technique. The mechanical properties of the modulus, hardness and toughness were characterized. Silicon carbide deposited at $1300^{\circ}C$ has the following values: E=316 GPa, H=29 GPa, and $K_c$=9.8 MPa $m^{1/2}$; additionally, silicon carbide deposited at $1350^{\circ}C$ shows E=283 GPa, H=23 GPa, and $K_c$=6.1 MPa $m^{1/2}$. The mechanical properties of two grades of SiC coating with different microstructures and thicknesses are discussed.

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

Tribological Properties of Sputtered Boron Carbide Coating and the Effect of ${CH}_4$ Reactive Component of Processing Gas

  • Cuong, Pham-Duc;Ahn, Hyo-Sok;Kim, Jong-Hee;Shin, Kyung-Ho
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.56-59
    • /
    • 2003
  • Boron carbide thin coatings were deposited on silicon wafers by DC magnetron sputtering using a ${B}_4$C target with Ar as processing gas. Various amounts of methane gas (${CH}_4$) were added in the deposition process to better understand their influence on tribological properties of the coatings. Reciprocating wear tests employing an oscillating friction wear tester were performed to investigate the tribological behaviors of the coatings in ambient environment. The chemical characteristics of the coatings and worn surfaces were studied using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). It revealed that ${CH}_4$addition to Ar processing gas strongly affected the tribologcal properties of sputtered boron carbide coating. The coefficient of friction was reduced approximately from 0.4 to 0.1, and wear resistance was improved considerably by increasing the ratio of ${CH}_4$gas component from 0 to 1.2 vol %. By adding a sufficient amount of ${CH}_4$(1.2 %) in the deposition process, the boron carbide coating exhibited lowest friction and highest wear resistance.

Tribological properties of sputtered boron carbide coating and the effect of $CH_4$ reactive component of processing gas

  • Cuong Pham Duc;Ahn Hyo-Sok;Kim Jong-Hee;Shin Kyung-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.78-84
    • /
    • 2003
  • Boron carbide thin coatings were deposited on silicon wafers by DC magnetron sputtering using a $B_4C$ target with As as processing gas. Various amounts of methane gas $(CH_4)$ were added in the deposition process to better understand their influence on tribological properties of the coatings. Reciprocating wear tests employing an oscillating friction wear tester were performed to investigate the tribological behaviors of the coatings in ambient environment. The chemical characteristics of the coatings and worn surfaces were studied using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). It revealed that $CH_4$ addition to As processing gas strongly affected the tribologcal properties of sputtered boron carbide coating. The coefficient of friction was reduced approximately from 0.4 to 0.1, and wear resistance was improved considerably by increasing the ratio of $CH_4$, gas component from 0 to $1.2\;vol\;\%$. By adding a sufficient amount of $CH_4\;(1.2\%)$ in the deposition process, the boron carbide coating exhibited lowest friction and highest wear resistance.

  • PDF

Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics (분무건조 및 대기 플라즈마 용사에 의한 탄화규소 세라믹스용 내환경 코팅재의 제조 및 평가)

  • Feng, Fan Jie;Moon, Heung Soo;Kwak, Chan Won;Park, Ji Yeon;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • Environmental barrier coatings (EBCs) are used to protect SiC-based ceramics or composites from oxidation and corrosion due to reaction with oxygen and water vapour at high temperatures above $1000^{\circ}C$. Mullite ceramics have been studied for environmental barrier coatings for Si-based ceramics. More recently, rare earth silicate ceramics have been identified as more water vapour-resistant materials than mullite for environmental barrier coatings. In this study, we fabricate mullite and yttrium silicate ceramics by an atmospheric plasma spray coating method using spherical granules fabricated by spray drying. As a result, EBCs with thicknesses in the range of $200-300{\mu}m$ are successfully fabricated without any macroscopic cracks or interfacial delamination. Phase and microstructure analysis are conducted, and the basic mechanical properties, such as hardness and indentation load-displacement curves are evaluated.

Role of Amorphous Silicon carbide in Microstructure and mechanical Properties of nc_TiC/a-SiC Nanocpomposite Coatings Prepared by PECVD (nc-TiC/a-SiC 나노복합체코팅의 기계적 특성 및 미세구조에서 비정질 SiC의 역할)

  • Lee, Ju-Hui;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.123-124
    • /
    • 2007
  • 3성분계 Ti-Si-C 코팅은 PECVD 기술에 의해 WC-Co 기판에 합성되었다. 이 연구에서 Ti-Si-C코팅에서의 비정질 silicon carbide 상의 효과는 XRD, XPS, TEM에 의해 분석되었다. TiC 결정의 입자크기는 비정질 silicon carbide의 침투 현상 때문에 Si의 함유량이 증가됨에 따라 감소된다. Ti-Si-C 코팅은 5.2%의 Si함유량에서 나노크기의 nc-TiC결정과 비정질 a-SiC로 이루어져 있고 최고 경도 33GPa와 탄성율 330GPa를 각각 보여주고 있다. 이 수치들은 순수한 TiC(-21GPa, 260Gpa)보다 눈에 띄게 높아졌다.

  • PDF

Characterizations on the Thermal Insulation of SiC Coated Carbon-Carbon Composites (탄화규소로 코팅된 탄소-탄소 복합재료의 단열 특성)

  • Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Bae, Soobin;Lee, Hyung-Ik;Choi, Kyoon;Lee, Kee Sung
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • This study investigates the characterization on the thermal insulation properties of silicon carbide coating on the Cf-C composites. The silicon carbide coatings by chemical vapor deposition on the C/C composites are prepared to evaluate thermal resistance. Firstly, we perform the basic insulation test by thermal shock at 1350℃ in air on the C/C composite and SiC-coated C/C composite. We also performed the burner tests on the surface of the composites at high temperatures such as 1700 and 2000℃, and the weight change after burner tests are measured. The damages on the surface of C/C composite and SiC-coated composite are observed. As a result, the SiC coating is beneficial to protect the C/C composite from high temperature even though damages such as defoliation, crack and voids are observed during burner test at 2000℃.

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min;Park, Kwi-Il;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.441-448
    • /
    • 2015
  • Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

Tribological Properties of Carbon Layers Produced by High Temperature Chlorination in Comparison with DLC Coating (DLC 코팅과 비교된 고온 염소처리에 의한 탄소 막의 Tribological 특성)

  • Choi, Hyun-Ju;Bae, Heung-Taek;Na, Byung-Chul;Lee, Jeon-Kook;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.375-380
    • /
    • 2007
  • Tribological properties of carbon layers produced by high temperature chlorination of SiC ceramic and DLC (diamond-like carbon) coatings produced by ion plating method were investigated and compared. Carbon coatings were produced by exposure of ball and disc type SiC in chlorine and hydrogen gas mixtures at $1200^{\circ}C$. After treatment for 10 h, dense carbon films up to $180{\mu}m$ in thickness were formed. Tribological behavior of newly developed carbon films were compared with that of DLC films. Wear resistance and frictional coefficient of the surface modified ball and disc type SiC were significantly improved compared to an untreated SiC specimen, and also the modified carbon layer had better performance than DLC coatings. Therefore, in this study, the newly developed carbon films have several advantages over existing carbon coatings such as DLC coatings and showed superior tribological performances.

Inspection of Ceramic Coatings Using Nanoindentation and Frequency Domain Photoacoustic Microscopy

  • Steen, T.L.;Basu, S.N.;Sarin, V.K.;Murray, T.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.390-402
    • /
    • 2006
  • The elastic properties and thickness of mullite environmental barrier coatings grown through chemical vapor deposition (CVD) on silicon carbide substrates were measured using frequency domain photoacoustic microscopy. In this technique, extremely narrow bandwidth surface acoustic waves are generated with an amplitude modulated laser source. A photorefractive crystal based interferometer is used to detect the resulting surface displacement. The complex displacement field is mapped as a function of source-to-receiver distance in order to extract the wavelength of the surface acoustic wave at a given excitation frequency, and the phase velocity is determined. The coatings tested exhibited spatial variations in thickness and mechanical properties. The measured surface wave dispersion curves were used to extract an effective value for the elastic modulus and the coating thickness. Nanoindentation was used to validate the measurements of the effective elastic modulus. The average elastic modulus measured through the coating thickness using nanoindentation is compared to the effective modulus found using the photoacoustic system. Optical microscopy is used to validate the thickness measurements. The results indicate that the photoacoustic microscopy technique can be used to estimate the effective elastic properties in coatings exhibiting spatial inhomogeneities, potentially providing valuable feedback for the optimization of the CVD growth process.