Browse > Article
http://dx.doi.org/10.4191/kcers.2015.52.6.441

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test  

Lee, Hyun Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Park, Kwi-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Park, Ji-Yeon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Kim, Weon-Ju (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Kim, Do Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Abstract
Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.
Keywords
SiC coating layer; TRISO; Micro-tensile-test; High temperature fracture strength; Weibull statistics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 505-53 (2001).   DOI
2 S. G. Hong, T. S. Byun, R. A. Lowden, L. L Snead, and Y. Katoh, "Evaluation of the Fracture Strength for Silicon Carbide Layers in the Tri-Isotropic-Coated Fuel Particle," J. Am. Ceram. Soc., 90 184-91 (2007).   DOI
3 R. Scholz, "Deuteron Irradiation Creep of Chemically Vapor Deposited Silicon Carbide Fibers," J. Nucl. Mater., 254 74-7 (1998).   DOI
4 C. H. Tang, Y. P. Tang, J. G. Zhu, Y. W. Zou, J. H. Li, and X. J. Ni, "Design and Manufacture of the Fuel Element for the 10 MW High Temperature Gas-Cooled Reactor," Nucl. Eng. Des., 91-102 (2002).
5 S. Nakao, T. A, K. Sato, "Mechanical Characterization of SiC Film at High Temperatures by Tensile Test," IEEE, MEMS 2008, Tucson, AZ, USA, January 13-17, 2008.
6 W.N. Sharpe, O. Jadaan, G. M. Beheim, G. D. Quinn, and N. N Nemeth, "Fracture Strength of Silicon Carbide Micro Specimens," J. Microelectromech. Syst., 14 903-13 (2005).   DOI
7 T. D. Gulden, C. L. Smith, and D. P Harmon, "Mechanical Design of TRISO-Coated Particle Fuels for the Large HTGR," Nucl. Technol., 16 100-9 (1972).   DOI
8 H. Nabielek, W. Kuhnlein, and W. Schenk, "Development of Advanced HTR Fuel Elements," Nucl. Eng. Des., 121 199-210 (1990).   DOI
9 B. G. Kim, Y. Choi, J. W. Lee, Y. W. Lee, D. S. Sohn, and G. M. Kim, "Multi-Layer Coating of Silicon Carbide and Pyrolytic Carbon on $UO_2$ Pellets by a Combustion Reaction," J. Nucl. Mater., 281 163-70 (2000).   DOI
10 G. K. Miller, D. A. Petti, D. J. Varacalle, and J. T. Maki, "Statistical Approach and Benchmarking for Modeling of Multi-Dimensional Behavior in TRISO-Coated Fuel Particles," J. Nucl. Mater., 317 69-82 (2003).   DOI
11 K. Minato and K. Fukuda, "Chemical Vapor Deposition of Silicon Carbide for Coated Fuel Particles," J. Nucl. Mater., 149 233-46 (1987).   DOI
12 H. Nickel, H. Nabielek, G. Pott, and A.W. Mehner, "Long Time Experience with the Development of HTR Fuel Elements in Germany," Nucl. Eng. Des., 217 141-51 (2002).   DOI
13 S. J Xu, J. G. Zhou, B. Yang, and B. Z. Zhang, "Effect of Deposition Temperature on the Properties of Pyrolytic SiC," J. Nucl. Mater., 224 12-6 (1995).   DOI
14 J. H. Kim, H. K. Lee, and D. K. Kim, "Strength Measurement of a Brittle Coating with a Trilayer Structure Using Instrumented Indentation and in situ Observation Techniques," Philos. Mag., 86 5383-96 (2006).   DOI
15 R. Modlinski, R. Puers, and I. D. Wolf, "AlCuMgMn Micro-Tensile Samples - Mechanical Characterization of MEMS Materials at Micro-Scale," Sens. Actuators. A. Phys., 143 120-28 (2008).   DOI
16 E. H. Lopez, P. J. Meadows, J. Tan, and P. Xiao, "Control of Stoichiometry, Microstructure, and Mechanical Properties in SiC Coatings Produced by Fluidized Bed Chemical Vapor Deposition," J. Mater. Res., 23 1785-96 (2008).   DOI
17 M. T. Lin, P. El-Deiry, R. R. Chromik, N. Barbosa, W. L. Brown, T. J. Delph, and R. P Vinci, "Temperature-Dependent Microtensile Testing of Thin Film Materials for Application to Microelectromechanical System," Microsyst. Technol., 12 1045-51 (2006).   DOI
18 R. Liu, H. Wang, X. P Li, G. F. Ding, and C. S. Yang, "A Micro-tensile Method for Measuring Mechanical Properties of MEMS Materials," J. Micromech. Microeng., 18 65002-7 (2008).   DOI
19 J. H. Park, M. S. Myung, and Y. J. Kim, "Tensile and High Cycle Fatigue Test of Al-3% Ti Thin Films," Sens. Actuators. A. Phys., 147 561-69 (2008).   DOI
20 W. N. Sharpe, G. M. Beheim, L. J. Evans, N. N. Nemeth, and O. M. Jadaan, "Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at 24 Degrees C and 1000 Degrees C," J. Microelectromech. Syst., 17 244-54 (2008).   DOI
21 D. J. Kim, D. J. Choi, Y. W. Kim, "Effect of Reactant Depletion on the Microstructure and Preferred Orientation of Polycrystalline Sic Films by Chemical-Vapor-Deposition," Thin Solid Films, 266 192-97 (1995).   DOI
22 H. S. Kim and D. J. Choi, "The Reactant Depletion Effect on Chemically Vapor Deposited SiC Films with Pressure and Gas Ambient," Thin Solid Films, 312 195-201 (1998).   DOI
23 Soda-lime glass. Data sheet, CiDRA Precision Services; LLC.
24 T. E. Wilantewicz and J. R. Varner, "Vickers Indentation Behavior of Several Commercial Glasses at High Temperatures," J. Mater. Sci., 43 281-98 (2008).   DOI
25 Soda-lime glass. Data sheet, Metroglasstech.
26 Soda-lime glass. Data sheet, Fa. Technolgas.
27 M. K. C. Holden and V. D. Frechette, "Healing of Glass in Humid Environments," J. Am. Ceram. Soc., 72 2189-93(1989).   DOI
28 B. A. Wilson and E. D. Case, "In situ Microscopy of Crack Healing in Borosilicate Glass," J. Mater. Sci., 32 3163-75 (1997).   DOI
29 A. Elkind and M. W. Barsoum, "Grain Growth and Strength Degradation of SiC Monofilaments at High Temperatures," J. Mater. Sci., 31 6119-23 (1996).   DOI
30 H. Zhang, J. Tian, W. Tang, and F. Lu, "Correlation between Fracture Strength and Crystal Orientation of Freestanding Diamond Films," Carbon, 41 579-625 (2003).   DOI
31 B. Liu, T. X. Hang, and C. H. Tang, "A Review of TRISOcoated Particle Nuclear Fuel Performance Models," Rare Metals, 25 337-42 (2006).
32 R. J. Price and G. R. Hopkins, "Flexural Strength of Proof-Tested and Neutron-Irradiated Silicon Carbide," J. Nucl. Mater., 108 &109 732-38 (1982).
33 B. O. Yavuz and R. E. Tressler, "High Temperature Mechanical Behavior of a Chemically Vapor Deposited Beta Silicon Carbide," Ceram. Int., 18 19-26 (1992).   DOI
34 A. Briggs, R. W. Davidge, C. Padgett, and S. Quickenden, "Crushing Behavior of High Temperature Reactor Coated Fuel Particles," J. Nucl. Mater., 61 233-42 (1976).   DOI
35 A. Naoumidis, R. Benz, and J. Rottman, "Identification of Silicon in Small Quantities of SiC-Coated and SiC (TRISO)-Coated Nuclear Fuel Particles," High. Temp. High. Press., 14 53-63 (1982).