DOI QR코드

DOI QR Code

Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics

분무건조 및 대기 플라즈마 용사에 의한 탄화규소 세라믹스용 내환경 코팅재의 제조 및 평가

  • 풍범걸 (국민대학교 기계시스템공학부 기계설계전공) ;
  • 문흥수 (세원하드페이싱 주식회사) ;
  • 곽찬원 (세원하드페이싱 주식회사) ;
  • 박지연 (원자력소재개발부 한국원자력연구원) ;
  • 이기성 (국민대학교 기계시스템공학부 기계설계전공)
  • Received : 2014.05.07
  • Accepted : 2014.07.21
  • Published : 2014.09.30

Abstract

Environmental barrier coatings (EBCs) are used to protect SiC-based ceramics or composites from oxidation and corrosion due to reaction with oxygen and water vapour at high temperatures above $1000^{\circ}C$. Mullite ceramics have been studied for environmental barrier coatings for Si-based ceramics. More recently, rare earth silicate ceramics have been identified as more water vapour-resistant materials than mullite for environmental barrier coatings. In this study, we fabricate mullite and yttrium silicate ceramics by an atmospheric plasma spray coating method using spherical granules fabricated by spray drying. As a result, EBCs with thicknesses in the range of $200-300{\mu}m$ are successfully fabricated without any macroscopic cracks or interfacial delamination. Phase and microstructure analysis are conducted, and the basic mechanical properties, such as hardness and indentation load-displacement curves are evaluated.

Keywords

References

  1. K. N. Lee, D. S. Fox, and N. P. Bansal, "Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and $Si_3N_4$ Ceramics," J. Eur. Ceram. Soc., 25, 1705-15 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.12.013
  2. C. V. Cojocaru, D. Levesque, C. Moreau, and R. S. Lima, "Performance of Thermally Sprayed Si/mullite/BSAS Environmental Barrier Coatings Exposed to Thermal Cycling in Water Vapor Environment," Surf. Coat. Technol., 216, 215-23 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.043
  3. V. Herb, G. Couegnat, and E. Martin, "Damage Assessment of Thin SiC/SiC Composite Plates Subjected to Quasi-Static Indentation Loading," Composites: Part A, 41, 1677-85 (2010). https://doi.org/10.1016/j.compositesa.2010.08.004
  4. A. Abdul-Aziz and R. T. Bhatt, "Modeling of Thermal Residual Stress in Environmental Barrier Coated Fiber Reinforced Ceramic Matrix," J. Compos. Mater., 46 [10], 1211-18 (2011).
  5. S. Ramasamy, S. N. Tewari, K. N. Lee, R. T. Bhatt, and D. S. Fox, "Slurry Based Multilayer Environmental Barrier Coatings for Silicon Carbide and Silicon Nitride Ceramics, II. Oxidation Resistance," Surf. Coat. Technol., 205, 266-70 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.048
  6. S. Ramasamy, S. N. Tewari, K. N. Lee, R. T. Bhatt, and D. S. Fox, "EBC Development for Hot-Pressed $Y_2O_3/Al_2O_3$ doped Silicon Nitride Ceramics," Mater. Sci. Eng. A, 527, 5492-98 (2010). https://doi.org/10.1016/j.msea.2010.05.067
  7. K. N. Lee, "Current Status of Environmental Barrier Coatings for Si-based ceramics," Surf. Coat. Technol., 133-134, 1-7 (2000). https://doi.org/10.1016/S0257-8972(00)00889-6
  8. J. Kimmel, N. Miriyala, J. Price, K. More, P. Tortorellib, H. Eatonc, G. Linseyc, and E. Sun, "Evaluation of CFCC Liners with EBC after Field Testing in a Gas Turbine," J. Eur. Cerma. Soc., 22, 2769-75 (2002). https://doi.org/10.1016/S0955-2219(02)00142-5
  9. M. P. Brady, B. L. Armstrong, H. T. Lin, M. J. Lance, K. L. More, L. R. Walker, F. Huang, and M. L. Weaver, "Feasibility Assessment of Self-Grading Metallic Bond Coat Alloys for EBCs/TBCs to Protect Si-Based Ceramics," Scr. Mater., 52, 393-97 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.024
  10. K. N. Lee, D. S. Fox, J. I. Eldridge, D. Zhu, R. C. Robinson, N. P. Bansal, and R. A. Miller, "Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS," J. Am. Ceram. Soc., 86 [8], 1299-306 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03466.x
  11. H. Wen, S. Dong, P. He, Z. Wang, H. Zhou, and X. Zhang, "Sol-Gel Synthesis and Characterization of Ytterbium Silicate Powders," J. Am. Ceram. Soc., 90 [12], 4043-46 (2007).
  12. B. J. Harder and K. T. Faber, "Transformation Kinetics in Plasma-Sprayed Barium- and Strontium-Doped Aluminosilicate (BSAS)," Scr. Mater., 62, 282-85 (2010). https://doi.org/10.1016/j.scriptamat.2009.11.019
  13. M. Aparicio and A. Duran, "Yttrium Silicate Coatings for Oxidation Protection of Carbon-Silicate Carbide Composites," J. Am. Ceram. Soc., 83 [6], 1351-55 (2000).
  14. Z. Suna, M. Li, and Y. Zhou, "Thermal Properties of Singlephase $Y_2SiO_5$," J. Eur. Cerma. Soc., 29, 551-57 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.026
  15. C. Kim, Y. S. Heo, T. W. Kim, and K. S. Lee, "Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying(in Korean)," J. Kor. Ceram. Soc. 50 [5], 326-32 (2013). https://doi.org/10.4191/kcers.2013.50.5.326
  16. D. H. Lee and K. S. Lee, "Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test(in Korean)," J. Kor. Ceram. Soc., 48 [5], 396-403 (2011). https://doi.org/10.4191/kcers.2011.48.5.396

Cited by

  1. Corrosion behavior of volcanic ash and calcium magnesium aluminosilicate on Yb2SiO5 environmental barrier coatings vol.125, pp.4, 2017, https://doi.org/10.2109/jcersj2.16211
  2. SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가 vol.30, pp.2, 2017, https://doi.org/10.7234/composres.2017.30.2.084