• Title/Summary/Keyword: Silicon Oxide

Search Result 1,166, Processing Time 0.027 seconds

Industrial Applications of Si-based Ceramics

  • Eichler, Jens
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.561-565
    • /
    • 2012
  • Due to their unique combination of properties, Si-based ceramics, such as silicon carbide (SiC), silicon nitride ($Si_3N_4$) and silicon oxide ($SiO_2$ as fused silica), have a range of industrial applications in fields such as the chemical industry, aluminum manufacturing, oil and gas production and solar cell production. For each materials group, examples of typical applications from various industry sectors are presented while taking into account the property fingerprint.

Formation and humidity-sensing properties of porous silicon oxide films by the electrochemical treatment (전기화학적 처리에 의한 다공질 실리콘 산화막의 형성과 감습 특성)

  • 최복길;민남기;류지호;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.93-99
    • /
    • 1996
  • The formation properties and oxidation mechanism of electrochemically oxidized porous silicon(OPS) films have been studied. To examine the humidity-sensitive properties of OPS films, surface-type and bulk-type humidity sensors were fabricated. The oxidized thickness of porous silicon layer(PSL) increases with the charge supplied during electrochemical humidity sensor shows high sensitivity at high relative humidity in low temperature. The sensitivity and linearity can be improved by optimizing a porosity of PSL. (author). refs., figs.

  • PDF

Double Layer Anti-reflection Coating for Crystalline Si Solar Cell (결정질 실리콘 태양전지를 위한 이층 반사방지막 구조)

  • Park, Je Jun;Jeong, Myeong Sang;Kim, Jin Kuk;Lee, Hi-Deok;Kang, Min Gu;Song, Hee-eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2013
  • Crystalline silicon solar cells with $SiN_x/SiN_x$ and $SiN_x/SiO_x$ double layer anti-reflection coatings(ARC) were studied in this paper. Optimizing passivation effect and optical properties of $SiN_x$ and $SiO_x$ layer deposited by PECVD was performed prior to double layer application. When the refractive index (n) of silicon nitride was varied in range of 1.9~2.3, silicon wafer deposited with silicon nitride layer of 80 nm thickness and n= 2.2 showed the effective lifetime of $1,370{\mu}m$. Silicon nitride with n= 1.9 had the smallest extinction coefficient among these conditions. Silicon oxide layer with 110 nm thickness and n= 1.46 showed the extinction coefficient spectrum near to zero in the 300~1,100 nm region, similar to silicon nitride with n= 1.9. Thus silicon nitride with n= 1.9 and silicon oxide with n= 1.46 would be proper as the upper ARC layer with low extinction coefficient, and silicon nitride with n=2.2 as the lower layer with good passivation effect. As a result, the double layer AR coated silicon wafer showed lower surface reflection and so more light absorption, compared with $SiN_x$ single layer. With the completed solar cell with $SiN_x/SiN_x$ of n= 2.2/1.9 and $SiN_x/SiO_x$ of n= 2.2/1.46, the electrical characteristics was improved as ${\Delta}V_{oc}$= 3.7 mV, ${\Delta}_{sc}=0.11mA/cm^2$ and ${\Delta}V_{oc}$=5.2 mV, ${\Delta}J_{sc}=0.23mA/cm^2$, respectively. It led to the efficiency improvement as 0.1% and 0.23%.

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구)

  • Song, Se Young;Kang, Min Gu;Song, Hee-Eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

The Deposition and Characterization of 10 nm Thick Teflon-like Anti-stiction Films for the Hot Embossing (핫 엠보싱용 점착방지막으로 사용되는 10nm급 두께의 Teflon-like 박막의 형성 및 특성평가)

  • Cha Nam-Goo;Kim In-Kwon;Park Chang-Hwa;Lim Hyung-Woo;Park Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • Teflon like fluorocarbon thin films have been deposited on silicon and oxide molds as an antistiction layer for the hot embossing process by an inductively coupled plasma (ICP) chemical vapor deposition (CVD) method. The process was performed at $C_4F_8$ gas flow rate of 2 sccm and 30 W of plasma power as a function of substrate temperature. The thickness of film was measured by a spectroscopic ellipsometry. These films were left in a vacuum oven of 100, 200 and $300^{\circ}C$ for a week. The change of film thickness, contact angle and adhesion and friction force was measured before and after the thermal test. No degradation of film was observed when films were treated at $100^{\circ}C$. The heat treatment of films at 200 and $300^{\circ}C$ caused the reduction of contact angles and film thickness in both silicon and oxide samples. Higher adhesion and friction forces of films were also measured on films treated at higher temperatures than $100^{\circ}C$. No differences on film properties were found when films were deposited on either silicon or oxide. A 100 nm silicon template with 1 to $500\;{\mu}m$ patterns was used for the hot embossing process on $4.5\;{\mu}m$ thick PMMA spun coated silicon wafers. The antistiction layer of 10 nm was deposited on the silicon mold. No stiction or damages were found on PMMA surfaces even after 30 times of hot embossing at $200^{\circ}C$ and 10 kN.

The Physical Properties of Silicon and Silicon-Oxide by Epitaxial Growth (1) (기상성장에 의한 Si단결정과 Si산화막의 특성( 1 ))

  • 성영권;오석주;김석기;이상수
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.11-18
    • /
    • 1973
  • This paper reports some results of Si and SiO$_{2}$ films obtained from the expitaxial growth by hydrogen reduction of SiCI$_{4}$ with a hydrogen and carbon dioxide mixture in an epitaxial-deposition chamber. The deposited Si and SiO$_{2}$ are studied by observing the process parameters affecting the rate of deposition, and the quantitative properties at the interface of Si and SiO$_{2}$ are also considered briefly according to the results of the optical absorption and the voltage-current characteristic of MOS etc. using step etching procedure for oxide films.

  • PDF

Hydrogen and Alkali Ion Sensing Properties of Ion Implanted Silicon Nitride Thin Film

  • Park, Gu-Bum
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.231-236
    • /
    • 2008
  • B, P, and Cs ions were implanted with various parameters into silicon nitride layers prepared by LPCVD. In order to get the maximum impurity concentration at the silicon nitride surface, a high temperature oxide (HTO) buffer layers was deposited prior to the implantation. Alkali ion and pH sensing properties of the layers were investigated with an electrolyte-insulator-silicon (EIS) structure using high frequency capacitance-voltage (HF-CV) measurements. The ion sensing properties of implanted silicon nitrides were compared to those of as-deposited silicon nitride. Band Cs co-implanted silicon nitrides showed a pronounced difference in pH and alkali ion sensing properties compared to those of as-deposited silicon nitride. B or P implanted silicon nitrides in contrast showed similar ion sensitivities like those of as-deposited silicon nitride.

A Study on the Nitride Residue and Pad Oxide Damage of Shallow Trench Isolation(STI)-Chemical Mechanical Polishing(CMP) Process (STI-CMP 공정의 질화막 잔존물 및 패드 산화막 손상에 대한 연구)

  • Lee, U-Seon;Seo, Yong-Jin;Kim, Sang-Yong;Jang, Ui-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.438-443
    • /
    • 2001
  • In the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control, within-wafer-non-uniformity, and the possible defects such as pad oxide damage and nitride residue. The defect like nitride residue and silicon (or pad oxide) damage after STI-CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI fill and STI-CMP were discussed. Consequently, we could conclude that law trench depth and high CMP thickness can cause nitride residue, and high trench depth and over-polishing can cause silicon damage.

  • PDF

Fabrication and characterization of SILO isolation structure (SILO 구조의 제작 방법과 소자 분리 특성)

  • Choi, Soo-Han;Jang, Tae-Kyong;Kim, Byeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.328-331
    • /
    • 1988
  • Sealed Interface Local Oxidation (SILO) technology has been investigated using a nitride/oxide/nitride three-layered sandwich structure. P-type silicon substrate was either nitrided by rapid thermal processing, or silicon nitride was deposited by LPCVD method. A three-layered sandwich structure was patterned either by reactive ion etch (RIE) mode or by plasma mode. Sacrificial oxidation conditions were also varied. Physical characterization such as cross-section analysis of field oxide, and electrical characterization such as gate oxide integrity, junction leakage and transistor behavior were carried out. It was found that bird's beak was nearly zero or below 0.1um, and the junction leakages in plasma mode were low compared to devices of the same geometry patterned in RIE mode, and gate oxide integrity and transistor behavior were comparable. Conclusively, SILO process is compatible with conventional local oxidation process.

  • PDF