• Title/Summary/Keyword: Silicon Nitrides

Search Result 24, Processing Time 0.023 seconds

Comparison of Passivation Property on Hydrogenated Silicon Nitrides whose Antireflection Properties are Identical (반사방지 특성을 통일시킨 실리콘 질화막 간의 패시베이션 특성 비교)

  • Kim, Jae Eun;Lee, Kyung Dong;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Silicon nitride ($SiN_x:H$) films made by plasma enhanced chemical vapor deposition (PECVD) are generally used as antireflection layers and passivation layers on solar cells. In this study, we investigated the properties of silicon nitride ($SiN_x:H$) films made by PECVD. The passivation properties of $SiN_x:H$ are focused on by making the antireflection properties identical. To make equivalent optical properties of silicon nitride films, the refractive index and thickness of the films are fixed at 2.0 and 90 nm, respectively. This limit makes it easier to evaluate silicon nitride film as a passivation layer in realistic application situations. Next, the effects of the mixture ratio of the process gases with silane ($SiH_4$) and ammonia ($NH_3$) on the passivation qualities of silicon nitride film are evaluated. The absorption coefficient of each film was evaluated by spectrometric ellipsometry, the minority carrier lifetimes were evaluated by quasi-steady-state photo-conductance (QSSPC) measurement. The optical properties were obtained using a UV-visible spectrophotometer. The interface properties were determined by capacitance-voltage (C-V) measurement and the film components were identified by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectroscopy detection (RBS) - elastic recoil detection (ERD). In hydrogen passivation, gas ratios of 1:1 and 1:3 show the best surface passivation property among the samples.

Formation of ultra-thin $Ta_{2}O_{5}$ film on thermal silicon nitrides (열적 성장된 실리콘 질화막위에 산화 탄탈륨 초박막의 형성)

  • 이재성;류창명;강신원;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.35-43
    • /
    • 1995
  • To obtain high quality of $Ta_{2}O_{5}$ film, two dielectric layers of $Si_{3}N_{4}$ and $Ta_{2}O_{5}$ were subsequently formed on Si wafer. Silicon nitride films were thermally grown in 10 Torr ammonia ambient by R.F induced heating system. The thickness of thermally grown $Si_{3}N_{4}$ film was able to be controlled in the range of tens $\AA$ due to the self-limited growth property. $Ta_{2}O_{5}$ film of 200$\AA$ thickness was then deposited on the as-grown $Si_{3}N_{4}$ film about 25$\AA$ thickness by sputtering method and annealed at $900^{\circ}C$in $O_{2}$ ambient for 1hr. Stoichiometry film was prepared by the annealing in oxygen ambient. Despite the high temperature anneal process, silicon oxide layer was not grown at the interface of the layered films because of the oxidation barrier effect of Si$_{3}$N$_{4}$ film. The fabricated $Ta_{2}O_{5}$/$Si_{3}N_{4}$ film showed low leakage current less than several nA and high dielectric breakdown strength.

  • PDF

Effects of Fabrication Variables and Microstructures on the Compressive Strength of Open Cell Ceramics (개방셀 세라믹스의 압축강도에 대한 제조공정변수 및 미세구조의 영향)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.954-964
    • /
    • 1999
  • The effect of fabrication variables and microstructures on the compressive strength of open cell alumina zirconia and silicon nitride ceramics fabricated by polymeric sponge method was investigated. Bulk density and compressive strength of open cell ceramics were mainly affected by coating characteristics of ceramic slurry on polymeric sponge that controlled a shape thickness and defect of the struts. Sintering temperature was optimized for enhancement of strut strength and compressive strength of open cell ceramics. Relative density and compressive strength behaviors were relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first coating of ceramic slurry had thin triangular prismatic struts that were often broken or longitudinally cracked. With an application of second coating of slurry shape of struts was transformed into thickner cylindrical one and defects in struts were healed but the relative density increased over 0.2 Open cell zirconia had both the highest bulk density and compressive strength and alumina had the lowest compressive strength while silicon nitrides showed relatively high compressive strength and the lowest density. Based upon the analysis open cell silicon nitride was expected to be one of potential structural ceramics with light weight.

  • PDF

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

THE NEW TYPE BROAD BEAM ION SOURCES AND APPLICATIONS

  • You, D.W.;Feng, Y.C.;Wang, Y.;Kuang, Y.Z.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.131-138
    • /
    • 1995
  • The broad beam ion sources of hot filament plasma type have widely used for modifications of materials and thin films, and the new type intensive current broad beam metal ion source including reactive gaseous ion beams is needed for preparing the hard coating films such as DLC, $\beta-C_3N_4$ Carbides, Nitrides, Borides etc. Now a electorn beam evaporation(EBE) broad beam metal ion source has been developed for this purpose in our lab. CN film has been formed by the EBE ion source. Study of the CN film shows that it has high hardness(HK=5800kgf/$\textrm {mm}^2$)and good adhesion. This method can widely changes the ratio of C/N atom's concentrations from 0.14 to 0.6 and has high coating rate. The low energy pocket ion source which was specially designed for surface texturing of medical silicon rubber was also developed. It has high efficiency and large uniform working zone. Both nature texturing and mesh masked texturing of silicon rubbers were performed. The biocompatibility was tested by culture of monocytes, and the results showed improved biocompatibility for the treated silicon rubbers. In addition, the TiB2 film synthesized by IBED is being studied recently in our lab. In this paper, the results which include the hardness, thickness of the films and the AES, XRD analysis as well as the tests of the oxidation of high temperature and erosion will be presented.

  • PDF

A Comparative Study on the Precursors for the Atomic Layer Deposition of Silicon Nitride Thin Films (원료물질에 따른 실리콘 질화막의 원자층 증착 특성 비교)

  • Lee Won-Jun;Lee Joo-Hyeon;Lee Yeon-Seong;Rha Sa-Kyun;Park Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.141-145
    • /
    • 2004
  • Silicon nitride thin films were deposited by atomic layer deposition (ALD) technique in a batch-type reactor by alternating exposures of precursors. XJAKO200414714156408$_4$ or$ SiH_2$$Cl_2$ was used as the Si precursor, $NH_3$ was used as the N precursor, and the deposited films were characterized comparatively. The thickness of the film linearly increased with the number of deposition cycles, so that the thickness of the film can be precisely controlled by adjusting the number of cycles. As compared with the deposition using$ SiCl_4$, the deposition using $SiH_2$$Cl_2$ exhibited larger deposition rate at lower precursor exposures, and the deposited films using $SiH_2$$Cl_2$ had lower wet etch rate in a diluted HF solution. Silicon nitride films with the Si:N ratio of approximately 1:1 were obtained using either Si precursors at $500^{\circ}C$, however, the films deposited using $SiH_2$$Cl_2$ exhibited higher concentration of H as compared with those of the $SiC_4$ case. Silicon nitride thin films deposited by ALD showed similar physical properties, such as composition or integrity, with the silicon nitride films deposited by low-pressure chemical vapor deposition, lowering deposition temperature by more than $200^{\circ}C$.

Vapor phase synthesis of silicon nitride powder using DC plasma torch (DC 플라즈마 토치를 이용한 질화규소 분말의 기상합성)

  • Hwang, Y.;Sohn, Y.U.;Chung, H.S.;Choi, S.K.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.370-377
    • /
    • 1994
  • DC plasma torch which is a non-transferred type was constructed and silicon nitride powders were produced. Ar gas is used as a plasma gas and gas reactants with the carrier gas are introduced beneath the plasma ignition part. Two slits are attached and a reactive quenching gas is introduced through them. Using $SiCl_4 and NH_3$ as starting materials, silicon nitride powders were produced. As-produced powders were amorphous and crystalline silicon nitrides were obtained by heating at $1420^{\circ}C$ for two hours under nitrogen atmosphere. Silicon nitride phase was identified in the XRD patterns and IR spectrum, and the image of the powders before and after heating was observed from the TEM analysis.

  • PDF

Synthesis of an Ordered Porous SiCN Ceramic Film by Self-Assembly of Inorganic-Organic Diblock Copolymer

  • Nghiem Quoc Dat;Kim Dong-Pyo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.296-296
    • /
    • 2006
  • Highly temperature stable mesoporous materials have excellent properties and potential applications. Here we show a novel poly(vinyl)silazane-block-polystyrene diblock copolymer, which was synthesized by controlled/living free radical polymerization with reversible addition fragmentation chain transfer (RAFT) route. The obtained diblock copolymer occurs the phaseseparation on the nanoscale to form ordered nanostructure, which is converted to mesoprorous ceramic after heating at 800oC. This route demonstrates the preparation of highly temperature stable mesoporous silicon carbon nitrides (SiCN) ceramic film directed from highly cross-linking poly(vinyl)silazane blocks with high ceramic yield, which is different from previous pathway.

  • PDF

Sputtering Technology and Prospect for Transparent Conductive Thin Film (투명전도성 박막의 활용을 위한 스퍼터링 증착 기술과 전망)

  • Sangmo Kim;Kyung Hwan Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.109-124
    • /
    • 2023
  • For decades, sputtering as a physical vapor deposition (PVD) method has been a widely used technique for film coating processes. The sputtering enables oxides, metals, alloys, nitrides, etc to be deposited on a wide variety of substrates from silicon wafers to polymer substrates. Meanwhile, transparent conductive oxides (TCOs) have played important roles as electrodes in electrical applications such as displays, sensors, solar cells, and thin-film transistors. TCO films fabricated through a sputtering process have a higher quality leading to an improved device performance than other films prepared with other methods. In this review, we discuss the mechanism of sputtering deposition and detail the TCO materials. Related technologies (processing conditions, materials, and applications) are introduced for electrical applications.

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon;Ko, Jae-Woong;Park, Young-Jo;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.318-324
    • /
    • 2012
  • Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.