• Title/Summary/Keyword: Silicon Electrode

Search Result 392, Processing Time 0.031 seconds

A Study of Mechanical Machining for Silicon Upper Electrode (실리콘 상부 전극의 기계적 가공 연구)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.59-63
    • /
    • 2021
  • Upper electrode is one of core parts using plasma etching process at semiconductor. The purpose of this study is to analyze effects of cutting conditions for mechanical machining of silicon upper electrode. For this research, surface roughness of machined workpiece and depth of damage inside of silicon electrode are experimented and analyzed and different values of feed rate and depth of cut are applied for the experiments. From these experiments, it is verified that the surface roughness and internal damaged layer get worse according to take more fast feed rate. In conclusion, cutting condition is very important factor for machining. Results of this study can use to develop various parts which are made from single crystal silicon and affect various benefits to the semiconductor industry for better productivity.

Removal of Laser Damage in Electrode Formed by Plating in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에서 도금을 이용한 전극 형성 시 발생되는 레이저 손상 제거)

  • Jeong, Myeong Sang;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.370-375
    • /
    • 2016
  • In this paper, we investigated the electrical properties of crystalline silicon solar cell fabricated with Ni/Cu/Ag plating. The laser process was used to ablate silicon nitride layer as well as to form the selective emitter. Phosphoric acid layer was spin-coated to prevent damage caused by laser and formed selective emitter during laser process. As a result, the contact resistance was decreased by lower sheet resistance in electrode region. Low sheet resistance was obtained by increasing laser current, but efficiency and open circuit voltage were decreased by damage on the wafer surface. KOH treatment was used to remove the laser damage on the silicon surface prior to metalization of the front electrode by Ni/Cu/Ag plating. Ni and Cu were plated for each 4 minutes and 16 minutes and very thin layer of Ag with $1{\mu}m$ thickness was plated onto Ni/Cu electrode for 30 seconds to prevent oxidation of the electrode. The silicon solar cells with KOH treatment showed the 0.2% improved efficiency compared to those without treatment.

Optimization and Characterization of Gate Electrode Dependent Flicker Noise in Silicon Nanowire Transistors

  • Anandan, P.;Mohankumar, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1343-1348
    • /
    • 2014
  • The low frequency noise in Silicon Nanowire Field Effect Transistors is analyzed by characterizing the gate electrode dependence on various geometrical parameters. It shows that gate electrodes have a strong impact in the flicker noise of Silicon Nanowire Field effect transistors. Optimization of gate electrode was done by comparing different performance metrics such a DIBL, SS, $I_{on}/I_{off}$ and fringing capacitance using TCAD simulations. Molybdenum based gate electrode showed significant improvement in terms of high drive current, Low DIBL and high $I_{on}/I_{off}$. The noise power sepctral density is reduced by characterizing the device at higher frequencies. Silicon Nanowire with Si3N4 spacer decreases the drain current spectral density which interms reduces the fringing fields there by decreasing the flicker noise.

Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성)

  • Hong, Ji-Hwa;Kang, Min Gu;Kim, Nam-Soo;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells (AZO 투명 전극 기반 반투명 실리콘 박막 태양전지)

  • Nam, Jiyoon;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

Screen Printing Electrode Formation Process for Crystalline Silicon Solar Cell (결정질 실리콘 태양전지용 스크린 프린팅 전극 공정 개발)

  • Eom, Taewoo;Lee, Sang Hyeop;Song, Chan Moon;Park, Sang Yong;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • The screen printing technique is one of process to form electrode for crystalline silicon solar cell and has been studied a lot, because it has many advantages such as low price, high efficiency and mass production due to simple and fast process. The reason why electrode formation is important is for influence of series resistance and amount of incident light in crystalline silicon solar cell. In this study, electrode was formed by screen printing method with various conditions like squeegee angle, printing speed, snap off, printing pressure. After optimizing various conditions, double printing method was applied to obtain low series resistance and high aspect ratio. As a result, we obtained electrode resistance 45.31 ohm, aspect ratio 4.38, shading loss 7.549% mono-crystalline silicon solar cell with optimal double screen printing condition.

Effects of Filtering System of Cutting Fluid on the Surface Quality of Plasma Etching Electrode (절삭유의 필터링 시스템이 플라즈마 에칭 전극의 표면 품질에 미치는 영향)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.46-50
    • /
    • 2018
  • The purpose of this study is to analyze effects of filtering system of cutting fluid which is used for machining silicon electrode. For the research, different sizes of filter clothes are applied to check grain size of sludge of cutting fluid. Surface roughness of machined workpiece, depth of damage inside of silicon electrode, and suspended solids of cutting fluid are experimented and analyzed. From these experiments, it is verified that filtering system of cutting fluid is very important factor for machining. Results of this study can affect various benefits to the semiconductor industry for better productivity and better atmospheric pollution in workplace.

Improvement of Repeatability during Dielectric Etching by Controlling Upper Electrode Temperature (Capacitively Coupled Plasma Source를 이용한 Etcher의 상부 전극 온도 변화에 따른 Etch 특성 변화 개선)

  • Shin, Han-Soo;Roh, Yong-Han;Lee, Nae-Eung
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.322-326
    • /
    • 2011
  • Etch process of silicon dioxide layer by using capacitively coupled plasma (CCP) is currently being used to manufacture semiconductor devices with nano-scale feature size below 50 nm. In typical CCP plasma etcher system, plasmas are generated by applying the RF power on upper electrode and ion bombardment energy is controlled by applying RF power to the bottom electrode with the Si wafer. In this case, however, etch results often drift due to heating of the electrode during etching process. Therefore, controlling the temperature of the upper electrode is required to obtain improvement of etch repeatability. In this work, we report repeatability improvement during the silicon dioxide etching under extreme process conditions with very high RF power and close gap between upper and bottom electrodes. Under this severe etch condition, it is difficult to obtain reproducible oxide etch results due to drifts in etch rate, critical dimension, profile, and selectivity caused by unexpected problems in the upper electrode. It was found that reproducible etch results of silicon dioxide layer could be obtained by controlling temperature of the upper electrode. Methods of controlling the upper electrode and the correlation with etch repeatability will be discussed in detail.

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • Park, Je-Sik;Lee, Cheol-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF