• Title/Summary/Keyword: Silica thickness

Search Result 159, Processing Time 0.027 seconds

Optical Properties and Structural Analysis of SiO2 Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 SiO2 후막의 광학적 성질 및 구조적 분석)

  • Cho, Sung-Min;Kim, Yong-Tak;Seo, Yong-Gon;Yoon, Hyung-Do;Im, Young-Min;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.479-483
    • /
    • 2002
  • Silicon dioxide thick film using silica optical waveguide cladding was fabricated by Plasma Enhanced Chemical Vapor Deposition(PECVD) method, at a low temperature ($320^{\circ}$C) and from $(SiH_4+N_2O)$ gas mixtures. The effects of deposition parameters on properties of $SiO_2$ thick films were investigated by variation of $N_2O/SiH_4$ flow ratio and RF power. After the deposition process, the samples were annealed in a furnace at $1150^{\circ}$C, in N2 atmosphere, for 2h. As the $N_2O/SiH_4$ flow ratio increased, deposition rate decreased from 9.4 to 2.9 ${\mu}m/h$. As the RF power increased, deposition rate increased from 4.7 to 6.9 ${\mu}m/h$. The thickness and the refractive index measurements were measured by prism coupler. X-ray Photoelectron Spectroscopy(XPS) and Fourier Transform-infrared Spectroscopy(FT-IR) were used to determine the chemical states. The cross-section of films was observed by Scanning Electron Microscopy(SEM).

Characteristics of Pearlescent Pigment using in Make-up Cosmetics (색조화장에 사용되는 진주광택 안료의 특성)

  • Kwak, Han-Ah;Choi, Eun-Young;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • We investigated the morphological characteristics of the pearlescent pigment by using scanning electron microscope, energy dispersive X-ray spectrometry and thermal analyzer. The result is that the shape of pigment is platy polygonal form through observing the pearlescent pigment by the scanning electron microscope. The size of pigment is various and not formed in standardized size or shape. The pigment flakes were measured about from $30{\mu}m$ to $300{\mu}m$. The tip of the piece of pigment is pointed shape or angled. The result of observing them by the scanning electron microscope in magnifying high power is that the edge and the lateral face of them is an round form and the measurement of thickness is about $9{\mu}m$. As well using the high magnification scanning electron microscope, the surface of the pigment flake observed like rugged as coating with the $TiO_2$ element, the diameter of the coating particle is around 60 nm, then the coating particle consists of granular substance. Analysis of the configuration elements of pearlescent pigment using by the energy dispersive X-ray spectrometry is that O, Si, C, Na, Ca, Ti, Zn detected in the surface of pigment and its lateral face identifies similar components. In thermal analysis, there are no contained quantity differences between them in beginning from $100^{\circ}C$ to $800^{\circ}C$ showing thermal analysis, 1.1% out of contained quantity reduced at $115^{\circ}C$, 1.7% dropped at $416^{\circ}C$, and 1.9% decreased at $797^{\circ}C$.

Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification (화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용)

  • Han, Sang Wook;Kim, Kwang-Dae;Kim, Ju Hwan;Uhm, Sunghyun;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Polydimethylsiloxane (PDMS) can be deposited on various substrates using chemical vapor deposition process, which results in the formation of PDMS thin films with thickness below 5 nm. PDMS layers can be evenly deposited on surfaces of nanoparticles composed of various chemical compositions such as $SiO_2$, $TiO_2$, ZnO, C, Ni, and NiO, and the PDMS-coated surface becomes completely hydrophobic. These hydrophobic layers are highly resistant towards degradation under acidic and basic environments and UV-exposures. Nanoparticles coated with PDMS can be used in various environmental applications: hydrophobic silica nanoparticles can selectively interact with oil from oil/water mixture, suppressing fast diffusion of spill-oil on water and allowing more facile physical separation of spill-oil from the water. Upon heat-treatments of PDMS-coated $TiO_2$ under vacuum conditions, $TiO_2$ surface becomes completely hydrophilic, accompanying formation oxygen vacancies responsible for visible-light absorption. The post-annealed $PDMS-TiO_2$ shows enhanced photocatalytic activity with respect to the bare $TiO_2$ for decomposition of organic dyes in water under visible light illumination. We show that the simple PDMS-coating process presented here can be useful in a variety of field of environmental science and technology.

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

A STUDY ON THE MECHANICAL PROPERTIES OF EXPERIMENTAL, COMPOSITES CONTAINING ZIRCONIA FILLER (지르코니아 필러를 첨가한 복합레진의 기계적 성질에 관한 연구)

  • Rew, Kyung-Hee;Choi, Ho-Young;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.421-434
    • /
    • 2000
  • The purpose of this study was to evaluate the influences of incorporation of zirconium-silicate on diametral tensile strength, shear bond strength to the enamel, and depth of cure of 7 experimental composites. One group contained no filler(group 1 or control group), and the other 6 composites contain 75% filler in which zirconium-silicate(Zr-Si) were 0%, 2%, 4%, 6%, 8%, 10% with reduced contents of silica filler, respectively. Both of fillers were treated with 1% silane (${\gamma}$-methacryloxypropyltrimethoxy silane). Light curable monomers were prepared by mixing Bis-GMA and TEGDMA with 3:1 ratio and adding camphoroquinone(CQ) 0.6% with tertiary amine 0.3%. Diametral tensile strengths of specimens with $3mm{\times}6mm$ were measured with Instron (No.4467, USA) with 1mm/min crosshead speed. Shear bond strengths of composites which bonded to bovine enamel etched with 37% phosphoric acid were measured at Instron Testing Machine with as same speed as in diametral tensile strengths. Depth of cure were measured by a method that composite was filled in cylinder mold, illuminated at one side. and uncured composite was removed with acetone, and the residual thickness of composite was measured. Following results were obtained ; 1. Composites containing 0%, 2%, or 4% zirconium-silicate filler(group 2, 3 and 4) showed the statistically higher diametral tensile strength than the others. (p<0.05) 2. Increase of zirconium-silicate filler contents reduced the diametral tensile strength of experimental composites. ($r^2$=0.8721, p=0.0002) 3. Increase of zirconium-silicate filler contents did not affect the shear bond strength of experimental composites. ($r^2$=0.2815, p=0.4067) 4. Increase of zirconium-silicate filler contents reduced significantly the depth of cure of experimental composites. ($r^2$=0.9700, p<0.0001) These results mean that the mechanical properties of composites could not be improved by incorporation of small amount of zirconium-silicate filler. Also, the increased contents of zirconium-silicates fillers was found to reduce the diametral tensile strength and depth of cure.

  • PDF

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.

Development of Grinding/Polishing Process for Microstructure Observation of Copper melted Beads (구리 용융흔 미세조직 관측을 위한 연마/미세연마 프로세스 개발)

  • Park, Jin-Young;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.108-116
    • /
    • 2018
  • A melted bead microstructure can be divided into a deformed and undeformed layer. Measurement errors occur in the presence of a deformed layer, which should be removed through grinding/polishing whilst preserving the original structure. This paper proposes a grinding/polishing process to analyze the microstructure of copper melted beads. For the removal of the deformed layer, the correlation between the abrasive type/size, the polishing time and polishing rate was analyzed and the thickness of the deformed layer was less than $1{\mu}m$. The results suggest a new grinding/polishing procedure: silicon carbide abrasive $15{\mu}m$ (SiC P1200) 2 min, and $10{\mu}m$ (SiC P2400) 1 min; and diamond abrasive $6{\mu}m$ 8 min, $3{\mu}m$ 6 min, $1{\mu}m$ 10 min, and $0.25{\mu}m$ 8 min. In addition, a method of increasing the sharpness of the microstructure by chemical polishing with $0.04{\mu}m$ colloidal silica for 3 min at the final stage is also proposed. The overall grinding/polishing time is 38 min, which is shorter than that of the conventional procedure.

Electrochemical Characteristics of Hollow Silicon/Carbon Anode Composite for Various CTAB Amounts (CTAB 조성에 따른 할로우 실리콘/탄소 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.99-104
    • /
    • 2024
  • In this study, a carbon coated hollow silicon (HSi/C) composite material was prepared for anode material of high-capacity lithiun-ion battery. Hollow silica (HSiO2) was synthesized by the Stöber method with CTAB (N-Cetyltrimethylammonium bromide). The HSi/C anode composite was manufactured by carbon coating after magnesiothermic reduction of HSiO2. The physical and electrochemical characteristics of the prepared anode materials were investigated based on CTAB amount. In the FE-SEM analysis, it was found that the HSiO2 particle size increased as CTAB amount decreased, but shell thickness decreased. The HSi/C composites exhibited high initial discharge capacities of 1866.7, 2164.5 and 2188.6 mAh/g with various CTAB ratios (0.5, 1.0, 1.5), respectively. After 100 cycles of charge-discharge, 0.5-HSi/C demonstrated a high reversible capacity of 1171.3 mAh/g and a capacity retention of 70.9%. Electrochemical impedance spectroscopy (EIS) was employed to analyze the impedance characteristics, and it revealed that 0.5-HSi/C showed more stable resistance characteristics than HSi/C composites with other CTAB amount over 20 cycles.

A Study on Geology of Clay Mineral Deposits of Pohang-Ulsan Area and their Physico-Chemical Properties (포항-울산간의 점토자원의 지질과 그 물리화학적 특성에 관한 연구)

  • Kim, Ok Joon;Lee, Ha Young;Kim, Suh Woon;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.167-215
    • /
    • 1971
  • I. Purpose and Importance of the Study The purpose of the present study is to clarify to geological, mineralogical, and physico-chemical properties of the clay minerals deposits imbedded in the Tertiary sediments in the areas between. Pohang and Ulsan along southeastern coastal region of Korea. These clays are being mined and utilized for filter and insecticide after activation or simple pulverizing, nontheless activated clays are short coming as chemical industry in Korea has been rapidly grown in recent years. In spite of such increase in clay demand, no goological investigation on clay deposits nor physico-chemical properties of the clays have been carried out up to date. Consequently activated clays produced in Korea is not only of low grade but also of shortage in supply, so that Korea has to import activated clays of better grade. The importance of the present study lies, therefore, on that guiding principle could be laid down by knowing stratigraphical horizons, of clay deposits and fundamental data of improving grade of activated clays might be derived from the results of physico-chemical examinations. II. Contents and Scope of the study The contents of the study are pinpointed down in the following two subjects: 1) General geological investigation of Tertiary formations distributed in the areas between Pohang and UIsan, and detail geological study of the bentonitic clay deposits imbedded in them. 2) To clarifty physico-chemical characteristics of the clays by means of chemical analysis, X-ray diffraction and electron microscope. The scope of the study involves the following there points: i) Regional geological investigation-This investigation has been carried out in order to find out the distribution of Tertiary sediments and exact location of clay mineral deposits in the areas between Pohang and UIsan. ii) Detail geological investigation-This has been concentrated in and around the clay deposits which. had been found out by the regional investigation. iii) Laboratory researchs include i) age determination and correlation of Tertiary sediments by paleontological study, and ii) Chemical analysis, X-ray diffraction, and electron microscopic studies on clays, samples taken from various clay deposits. III. Research Results and Suggestions 1) The geology of the area investigated is composed mainly of Janggi and Beomgokri groups of Miocene age in ascending order rested on the upper Silla system, Balkuksa granite and volcanic rocks of upper Cretaceous age as base. 2) Janggi group is composed in ascending order of Janggi conglomerate, Nultaeri rhyolitic tuff, Keumkwangdong shale, two beds of lignite-bearing formations which consist of alternation of conglomerate, sandstone and mudstone, and andesitic, rhyolitic, and basaltic tuff beds. 3) Beomgokri group is mainly composed of andesitic to rhyolitic tuff interlayered by conglomerate and tuffaceous sandstone. In the areas around boundary between North-and South Kyeongsang-do is distributed Haseori farmation which is composed of conglomerate, sandstone, mudstone and andesitic to rhyolitic tuff, and which is correlated to Eoilri formation of Janggi group. 4) Clay deposits of the area are interbedded in Eoilri, Haseori, Nultaeri tuff, Keumkwangdong shale, upper and lower horizon of the lower lignite-bearing seam, and Keumori rhyolitic tuff formations of Janggi group; and are genetically classi.fied into four categories, that is, i) those derived from volcanic ash beds(Haseori and Daeanri deposits), ii) those of secondary residual type from rhyolitic tuff beds(Seokupri deposits), iii) Clay beds above and beneath the lignite seams, (Janggi and Keumkwangdong deposits), and iv) those derived from rhyolitic tuff beds(Sangjeong and Tonghae deposits). 5) Mineral constituents of clay deposits are, according to X-ray diffraction, montmorillonite accompanied in different degree by cristobalite, plagioclase, quartz, stilbite, and halloysite in rare occasion. The clays are grouped according to mineral composition into four types; i) those consist mostly of montmorillonite, ii) those composed of montmorillonite and cristobalite, iii) those composed of montmorillonite and plagioclase, and iv) those composed of montmorillonite, plagioclase and quartz. 6) Clays interbedded in Haseori formation and vicinity of lignite seams belong to the first type, are of good quality and derived either from volcanic ash bed, or primary clay beds near lignite seams. Clays belonged to other types are derived from weathering of rhyolitic tuff formations and their quality varies depending upon original composition and degree of weathering. Few clays in secondary residual type contain small amount of halloysite. 7) Judging from analytical data, content of silica($SiO_2$) varies proportionally with content of cristobalite, and alumina($Al_2O_3$) content does not vary with that of plagioclase, but increases in the sedimentary bedded type of deposits. 8) It is unknown whether or not these days could be upgraded by beneficiation since no grain size of these impurities nor beneficiation test had been studied. 9) Clay beds derived from valcanic ash layers or sedimentary layers at the vicinity of lignite seams are thin in thickness and of small, discontinueous lenticular shape, although they are of good quality; and those derived from rhyolitic tuff formations or residual type from tuff are irregular in both occurrence and quality. It is, therefore, not only very difficult but also meaningless to calculate its reserve, and reserve estimation, even if done, will greatly be deviated from practically minable one. Consequently, way of discovery and exploitation of clay deposits in the area under consideration is to check the geologically favorable areas whenever needed.

  • PDF