• Title/Summary/Keyword: Significant wave

Search Result 1,527, Processing Time 0.028 seconds

Cyclic fatigue life of Tango-Endo, WaveOne GOLD, and Reciproc NiTi instruments

  • Yilmaz, Koray;Ozyurek, Taha
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • Objectives: To compare the fatigue life of Tango-Endo, WaveOne GOLD, and Reciproc NiTi instruments under static model via artificial canals with different angles of curvature. Materials and Methods: Reciproc R25, WaveOne GOLD Primary, and Tango-Endo instruments were included in this study (n = 20). All the instruments were rotated in artificial canals which were made of stainless steel with an inner diameter of 1.5 mm, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ angles of curvatures and a radius of curvature of 5 mm until fracture occurred, and the time to fracture was recorded in seconds using a digital chronometer. The data were analyzed using Kruskal-Wallis and post-hoc Dunn tests were used for the statistical analysis of data in SPSS 21.0 software. Results: Tango-Endo files were found to have significantly higher values than WaveOne GOLD and Reciproc files in terms of fatigue life (p < 0.05). However, there was no statistically significant difference between fatigue life of Reciproc and WaveOne GOLD files (p > 0.05). It was determined that increasing the angle of curvature of the stainless canals caused significant decreases in fatigue life of all of three files (p < 0.05). Conclusions: Within the limitations of the present study, the cyclic fatigue life of Tango-Endo in canals having different angles of curvature was statistically higher than Reciproc and WaveOne GOLD.

Comparison of Wave Prediction and Performance Evaluation in Korea Waters based on Machine Learning

  • Heung Jin Park;Youn Joung Kang
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.18-29
    • /
    • 2024
  • Waves are a complex phenomenon in marine and coastal areas, and accurate wave prediction is essential for the safety and resource management of ships at sea. In this study, three types of machine learning techniques specialized in nonlinear data processing were used to predict the waves of Korea waters. An optimized algorithm for each area is presented for performance evaluation and comparison. The optimal parameters were determined by varying the window size, and the performance was evaluated by comparing the mean absolute error (MAE). All the models showed good results when the window size was 4 or 7 d, with the gated recurrent unit (GRU) performing well in all waters. The MAE results were within 0.161 m to 0.051 m for significant wave heights and 0.491 s to 0.272 s for periods. In addition, the GRU showed higher prediction accuracy for certain data with waves greater than 3 m or 8 s, which is likely due to the number of training parameters. When conducting marine and offshore research at new locations, the results presented in this study can help ensure safety and improve work efficiency. If additional wave-related data are obtained, more accurate wave predictions will be possible.

Ocean Wave Forecasting and Hindercasting Method to Support for Navigational Safety of Ship (선박의 항행안전지원을 위한 파랑추산에 관한 연구)

  • Shin, Seung-Ho;Hashimoto, Noriaki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2003
  • In order to improve navigational safety of ships, an ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface wind first and then carried out ocean wave hindercasting simulations according to the routes the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed iou pressure system Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, wave period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

The Effects of Preference Characteristics of Korean Wave Drama on Images, Attitudes, and Purchase Intentions for Korean Cuisine among Chinese Tourists (방한 중국인의 한류 드라마에 대한 선호도 특성이 한식에 대한 이미지와 태도 및 한식의 구매의도에 미치는 영향)

  • Kim, Hee-Kyung;Sim, Ki Hyeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.440-453
    • /
    • 2017
  • In this study, we conducted an empirical analysis using structural equation modeling (SEM) by distributing questionnaires to 208 Chinese tourists who constitute the largest proportion of foreign tourists visiting South Korea. The survey was conducted in a face to face (FTF) manner with the aim to contribute to globalization of Korean cuisine through comprehensive analysis of the effects of preference characteristics of Korean wave dramas on the relationship among images, attitudes, and purchase intentions for Korean cuisine. The main actor characteristics among the preference characteristics of Korean wave dramas had a significant effect on the attitudes and purchase intentions for Korean cuisine. However, the thematic characteristics among the preference characteristics of Korean wave dramas did not have a significant effect on the purchase intentions for Korean cuisine; in addition, the production characteristics did not have a significant effect on the attitudes and purchase intentions for Korean cuisine. The eco-friendly and health images of Korean cuisine had a significant effect on the purchase intentions for Korean cuisine, and the attitudes toward Korean cuisine significantly affected the purchase intentions for Korean cuisine. Based on the results of this study, it is considered necessary to continuously publicize Korean cuisine through Korean wave dramas to build positive attitudes toward Korean cuisine through enhanced images of Korean cuisine.

A Study on Operation Rate and Output of Wave Power Generator by Waves Condition (파랑 조건에 따른 파력발전장치의 가동률과 발전량 산정에 대한 연구)

  • Ryu, Hwang-Jin;Hong, Key-Yong;Shin, Seung-Ho;Kim, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.615-619
    • /
    • 2009
  • This paper is investigated to variation of wave power generation operation rate, operating capacity and output with the wave conditions represented by wave height-period window. By the use of the long-term wave data from 1979 to 2002 which is provided by Korea Ocean Research & Development Institute(KORDI), we calculated the monthly variation of significant wave height(Hs), zero-up crossing period(Tz) and distribution of wave appearance rate. And using the same wave data, it was charted the Hs-Tz and wave-energy scatter diagrams.

  • PDF

On the Statistical Characteristics of the New Year Wave (New Year Wave의 통계적 특성에 대하여)

  • Kim, Do Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 2013
  • In this paper time series wave data, which were measured at the Draupner platform in the North Sea on 1995, are used to investigate statistical characteristics of nonlinear wave. Various statistical properties based on time and frequency domain are examined. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The skewness of wave profile is 0.393 and the kurtosis is 4.037 when the freak wave is occurred. The nonlinearity of D1520 data is higher than two adjacent wave data. AI index of the New Year Wave is 2.11 and the wave height is 25.6m. The zero crossing wave period of the New Year Wave is 12.5s which is compared to the average zero up-crossing period 11.3s. The significant steepness of wave data is 0.077 when the freak wave was occurred. H1/3/${\eta}_s$ does not increases as the kurtosis increases and the values is close to 4. The New Year Wave belongs to highly nonlinear wave data packet but the AI index is within linear focusing range.

Statistical Characteristics of Deepwater Waves along the Korean Coast (한국 연안 심해파의 통계적 특성)

  • Suh, Kyung-Duck;Kwon, Hyuk-Dong;Lee, Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.342-354
    • /
    • 2008
  • Some statistical characteristics of deepwater waves along the Korean coast have been investigated using various sources of wave measurement and hindcasting data. For very large waves comparable to design waves, it is recommended to use the average value of the empirical formulas proposed by Shore Protection Manual in 1977 and by Goda in 2003 for the relation between significant wave height and period. The standard deviation of significant wave periods non-dimensionalized with respect to the mean value for a certain significant wave height varies between 0.04 and 0.21 with a typical value of 0.1 depending upon different regions and different ranges of significant wave heights. The mean and standard deviation of the principal deepwater wave direction are presented at the 106 coastal grid points along the Korean coast. For relatively large waves, the probability density function of the directional spreading parameter $s_{max}$ is expressed as a lognormal distribution. The most suitable frequency spectrum in the Korean coast is the TMA spectrum. The probability density function of the peak enhancement factor $\gamma$ is also expressed as a lognormal distribution, with its mean value of 2.94, which is close to the value in the North Sea.

Analysis of the Wave Spectral Shape Parameters for the Definition of Swell Waves (너울성파랑 정의를 위한 파랑스펙트럼의 형상모수 특성 분석)

  • Ahn, Kyungmo;Chun, Hwusub;Jeong, Weon Mu;Park, Deungdae;Kang, Tae-Soon;Hong, Sung-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.394-404
    • /
    • 2013
  • In the present study, the characteristics of spectral peakedness parameter $Q_p$, bandwidth parameter ${\varepsilon}$, and spectral width parameter ${\nu}$ were analyzed as a first step to define the swell waves quantitatively. For the analysis, the joint probability density function of significant wave heights and peak periods were newly developed. The MCMC(Markov Chain Monte Carlo) simulations have been performed to generate the significant wave heights and peak periods from the developed probability density functions. Applying the simulated significant wave heights and peak periods to the theoretical wave spectrum models, the spectral shapes parameters were obtained and analyzed. Among the spectral shape parameters, only the spectral peakedness parameter $Q_p$, is shown to be independent with the significant wave height and peak wave period. It also best represents the peakedness of the spectral shape, and henceforth $Q_p$ should be used to define the swell waves with a wave period. For the field verification of the results, wave data obtained from Hupo port and Ulleungdo were analyzed and results showed the same trend with the MCMC simulation results.

Ocean wave forecasting and hindercasting method to support for navigational safety of ship (선박의 항행안전지원을 위한 파낭추산에 관한 연구)

  • 신승호;교본전명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.147-156
    • /
    • 2003
  • In order to improve navigational safety of ships, on ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface winds first and then carried out ocean wave hindercasting simulations according to the routes of the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed low pressure system in Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, was period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

  • PDF