Statistical Characteristics of Deepwater Waves along the Korean Coast

한국 연안 심해파의 통계적 특성

  • Suh, Kyung-Duck (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kwon, Hyuk-Dong (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Lee, Dong-Young (Coastal Engineering Research Department, Korea Ocean Research and Development Institute)
  • 서경덕 (서울대학교 건설환경공학부) ;
  • 권혁동 (서울대학교 건설환경공학부) ;
  • 이동영 (한국해양연구원 연안방재연구사업단)
  • Published : 2008.08.31

Abstract

Some statistical characteristics of deepwater waves along the Korean coast have been investigated using various sources of wave measurement and hindcasting data. For very large waves comparable to design waves, it is recommended to use the average value of the empirical formulas proposed by Shore Protection Manual in 1977 and by Goda in 2003 for the relation between significant wave height and period. The standard deviation of significant wave periods non-dimensionalized with respect to the mean value for a certain significant wave height varies between 0.04 and 0.21 with a typical value of 0.1 depending upon different regions and different ranges of significant wave heights. The mean and standard deviation of the principal deepwater wave direction are presented at the 106 coastal grid points along the Korean coast. For relatively large waves, the probability density function of the directional spreading parameter $s_{max}$ is expressed as a lognormal distribution. The most suitable frequency spectrum in the Korean coast is the TMA spectrum. The probability density function of the peak enhancement factor $\gamma$ is also expressed as a lognormal distribution, with its mean value of 2.94, which is close to the value in the North Sea.

다양한 파랑 관측 및 후측 자료를 이용하여 한국 연안의 심해파 통계 특성을 연구하였다. 설계파에 준하는 큰 파랑에 대해서는, 유의파고와 유의파주기 사이의 관계에 대하여 1977년 Shore Protection Manual 공식과 2003년 Goda 공식의 평균값을 사용하는 것이 바람직하다. 일정한 유의파고에 대하여 평균값으로 무차원화 시킨 유의파주기의 표준편차는 해역과 유의파고의 범위에 따라 0.04부터 0.21까지 변하며 전형적인 값은 0.1이다. 한반도 주변 106개 연안 격자점에서의 심해 주파향의 평균과 표준편차를 제시하였다. 비교적 큰 파랑에 대한 방향분산계수 $s_{max}$의 확률밀도함수는 대수정규분포로 표시된다. 우리나라 연안에서 가장 적합한 주파수 스펙트럼은 TMA 스펙트럼이다. 스펙트럼 첨두증대계수 $\gamma$의 확률밀도함수 또한 대수정규분포로 표시되며, 북해에서의 값과 비슷한 2.94의 평균값을 보인다.

Keywords

References

  1. 권혁동 (2008). 한반도 주변 심해파 주기, 파향 및 스펙트럼 형태의 통계적 특성 분석. 석사학위논문, 서울대학교
  2. 문일주 (1994). 파라메타 스펙트럼 방법에 의한 한국근해의 파랑 스펙트럼 특성 연구. 석사학위논문, 서울대학교
  3. 한국해양연구원 (2005). 전해역 심해 설계파 추정 보고서 II
  4. Bouws, E., Günther, H., Rosenthal, W. and Vincent, C. L. (1985). Similarity of the wind wave spectrum in finite depth water 1. Spectral form. J. Geophys. Res. 90(C1), 975-986 https://doi.org/10.1029/JC090iC01p00975
  5. Goda, Y. (1988). Statistical variability of sea state parameters as a function of a wave spectrum. Coastal Engineering in Japan, 31(1), 39-52 https://doi.org/10.1080/05785634.1988.11924482
  6. Goda, Y. (2000). Random Seas and Design of Maritime Structures. World Scientific, Singapore
  7. Goda, Y. (2001). Performance-based design of caisson breakwaters with new approach to extreme wave statistics. Coastal Eng. J. 43, 289-316 https://doi.org/10.1142/S0578563401000384
  8. Goda, Y. (2003). Revisiting Wilson's formulas for simplified wind-wave prediction. J. Waterw., Port, Coast. and Ocean Eng. 129(2), 93-95 https://doi.org/10.1061/(ASCE)0733-950X(2003)129:2(93)
  9. Goda, Y. and Suzuki, Y. (1975). Computation of refraction and diffraction of sea waves with Mitsuyasu's directional spectrum. Tech. Note of Port and Harbour Res. Inst. 230 (in Japanese)
  10. Goda, Y. and Takagi, H. (2000). A reliability design method of caisson breakwaters with optimal wave heights. Coastal Eng. J. 42, 357-387
  11. Hanzawa, M. Sato, H., Takahashi, S., Shimosako, K., Takayama, T., Tanimoto, K. (1996). New stability formula for wavedissipating concrete blocks covering horizontally composite breakwaters. Proc. 25th Int. Conf. on Coastal Eng., ASCE, Orlando, USA, 1665-1678
  12. Hashimoto, N. and Kobune, K. (1986). Estimation of directional spectra from the maximum entropy principle. Proc. 5th Int. OMAE Symp., Tokyo, 80-85
  13. Hong, S.Y., Suh, K.D. and Kweon, H.-M. (2004). Calculation of expected sliding distance of breakwater caisson considering variability in wave direction. Coastal Eng. J. 46, 119-140 https://doi.org/10.1142/S0578563404000987
  14. Kamphuis, J.W. (2000). Introduction to Coastal Engineering and Management. World Scientific, Singapore
  15. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkuso, M., Honda T. and Rikiishi, K. (1977). Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J. Phys. Oceanogr. 5, 750-760 https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  16. Morton, I.D., Bowers, J. and Mould, G. (1997). Estimating return period wave heights and wind speeds using a seasonal point process model. Coastal Eng. 31(1), 305-326 https://doi.org/10.1016/S0378-3839(97)00016-1
  17. Shore Protection Manual (1977). Coastal Engineering Research Center, U.S. Government Printing Office, Washington, D.C
  18. Suh, K.D., Kweon, H.-M. and Yoon, H.D. (2002). Reliability design of breakwater armor blocks considering wave direction in computation of wave transformation. Coastal Eng. J. 44, 321-341 https://doi.org/10.1142/S0578563402000585
  19. Toba, Y. (1997). The 3/2-power law for ocean wind waves and its applications. Advances in Coastal and Ocean Eng., P. L.- F. Liu, ed., Vol..3, World Scientific, Singapore, 31-65
  20. Wilson, B.W. (1965). Numerical prediction of ocean waves in the north atlantic for December, 1959. Deutsche Hydrographische Z. 18(3), 114-130 https://doi.org/10.1007/BF02333333