DOI QR코드

DOI QR Code

Comparison of Wave Prediction and Performance Evaluation in Korea Waters based on Machine Learning

  • Heung Jin Park (Department of Ocean System Engineering, Jeju National University) ;
  • Youn Joung Kang (Department of Ocean System Engineering, Jeju National University)
  • Received : 2023.12.01
  • Accepted : 2024.02.08
  • Published : 2024.02.28

Abstract

Waves are a complex phenomenon in marine and coastal areas, and accurate wave prediction is essential for the safety and resource management of ships at sea. In this study, three types of machine learning techniques specialized in nonlinear data processing were used to predict the waves of Korea waters. An optimized algorithm for each area is presented for performance evaluation and comparison. The optimal parameters were determined by varying the window size, and the performance was evaluated by comparing the mean absolute error (MAE). All the models showed good results when the window size was 4 or 7 d, with the gated recurrent unit (GRU) performing well in all waters. The MAE results were within 0.161 m to 0.051 m for significant wave heights and 0.491 s to 0.272 s for periods. In addition, the GRU showed higher prediction accuracy for certain data with waves greater than 3 m or 8 s, which is likely due to the number of training parameters. When conducting marine and offshore research at new locations, the results presented in this study can help ensure safety and improve work efficiency. If additional wave-related data are obtained, more accurate wave predictions will be possible.

Keywords

Acknowledgement

This study was supported by the research grant of Jeju National University in 2022.

References

  1. Adytia, D., Yonanta, A. R., & Subasita, N. (2018). Wind wave prediction by using autoregressive integrated moving average model: case study in Jakarta bay. International Journal on Information and Communication Technology (IJoICT), 4(2), 33-42. https://doi.org/10.21108/IJOICT.2018.42.300
  2. Carter, D. J. T. (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9(1), 17-33. https://doi.org/10.1016/0029-8018(82)90042-7
  3. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555
  4. Domala, V., Lee, W., & Kim, T. W. (2022). Wave data prediction with optimized machine learning and deep learning techniques. Journal of Computational Design and Engineering, 9(3), 1107-1122. https://doi.org/10.1093/jcde/qwac048
  5. Froehlich, H. E., Smith, A., Gentry, R. R., & Halpern, B. S. (2017). Offshore aquaculture: I know it when I see it. Frontiers in Marine Science, 4, 154. https://doi.org/10.3389/fmars.2017.00154
  6. Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural computation, 12(10), 2451-2471. https://doi.org/10.1162/089976600300015015
  7. Group, S., Bouws, E., Ephraums, J. J., Ewing, J. A., Francis, P. E., Gunther, H., ... & De Voogt, W. J. P. (1985). A shallow water intercomparison of three numerical wave prediction models (SWIM). Quarterly Journal of the Royal Meteorological Society, 111(470), 1087-1112. https://doi.org/10.1002/qj.49711147011
  8. Group, T. W. (1988). The WAM model-A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775-1810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
  9. Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  10. Hu, H., van der Westhuysen, A. J., Chu, P., & Fujisaki-Manome, A. (2021). Predicting Lake Erie wave heights and periods using XGBoost and LSTM. Ocean Modelling, 164, 101832. https://doi.org/10.1016/j.ocemod.2021.101832
  11. Kang, B. H., Kim, T. H., & Kong, G. Y. (2016). A novel method for long-term time series analysis of significant wave height. In 2016 Techno-Ocean (Techno-Ocean) 478-484. https://doi.org/10.1109/Techno-Ocean.2016.7890701
  12. Kim, J., Kim, T., Yoo, J., Ryu, J. G., Do, K., & Kim, J. (2022). STG-OceanWaveNet: Spatio-temporal geographic information guided ocean wave prediction network. Ocean Engineering, 257, 111576. https://doi.org/10.1016/j.oceaneng.2022.111576
  13. Kumar, N. K., Savitha, R., & Al Mamun, A. (2018). Ocean wave height prediction using ensemble of extreme learning machine. Neurocomputing, 277, 12-20. https://doi.org/10.1016/j.neucom.2017.03.092
  14. Masini, R. P., Medeiros, M. C., & Mendes, E. F. (2023). Machine learning advances for time series forecasting. Journal of Economic Surveys, 37(1), 76-111. https://doi.org/10.1111/joes.12429
  15. Ministry of Oceans and Fisheries. (2023). Status of marine accidents by accident type. https://www.kmst.go.kr/web/statView.do?menuIdx=213
  16. Minuzzi, F. C. & Farina, L. (2023). A deep learning approach to predict significant wave height using long short-term memory. Ocean Modelling, 181, 102151. https://doi.org/10.1016/j.ocemod.2022.102151
  17. Park, S. B., Shin, S. Y., Jung, K. H., & Lee, B. G. (2021). Prediction of significant wave height in Korea strait using machine learning. Journal of Ocean Engineering and Technology, 35(5), 336-346. https://doi.org/10.26748/KSOE.2021.021
  18. Pushpam, M. M. & Enigo, F. V.S. (2020). Forecasting significant wave height using RNN-LSTM models. In 2020 4th International Conference on Intelligent Computing and Control Systems, 1141-1146. https://doi.org/10.1109/ICICCS48265.2020.9121040
  19. Rhines, P. & Bretherton, F. (1973). Topographic Rossby waves in a rough-bottomed ocean. Journal of Fluid Mechanics, 61(3), 583-607. https://doi.org/10.1017/S002211207300087X
  20. Sabatier, F. (2007). US Army Corps of Engineers, Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100. US Army Corps of Engineers, Washington, DC (6 volumes). Journal of Mediterranean geography, (108), 146. https://doi.org/10.4000/mediterranee.201
  21. Son, B. & Do, K. (2021). Optimization of SWAN wave model to improve the accuracy of winter storm wave prediction in the East Sea. Journal of Ocean Engineering and Technology, 35(4), 273-286. https://doi.org/10.26748/KSOE.2021.019
  22. Swamp Group. (1985). Ocean wave modeling. Springer Science & Business Media, Part 1: Principal Results and Conclusions.
  23. Tolman, H. L. (2009). User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB Contribution, 276(220).
  24. You, S. H. & Park, J. S. (2010). Research on wind waves characteristics by comparison of regional wind wave prediction system and ocean buoy data. Journal of Ocean Engineering and Technology, 24(6), 7-15.