• Title/Summary/Keyword: Signed simple path

Search Result 6, Processing Time 0.017 seconds

Finding the Maximum Flow in a Network with Simple Paths

  • Lee, Seung-Min;Lee, Chong-Hyung;Park, Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.845-851
    • /
    • 2002
  • An efficient method is developed to obtain the maximum flow for a network when its simple paths are known. Most of the existing techniques need to convert simple paths into minimal cuts, or to determine the order of simple paths to be applied in the process to reach the correct result. In this paper, we propose a method based on the concepts of signed simple path and signed flow defined in the text. Our method involves a fewer number of arithmetic operations at each iteration, and requires fewer iterations in the whole process than the existing methods. Our method can be easily extended to a mixed network with a slight modification. Furthermore, the correctness of our method does not depend on the order of simple paths to be applied in the process.

On Finding the Maximum Capacity Flow in Networks

  • Lee, Chong-Hyung;Park, Dong-Ho;Lee, Seung-Min
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.297-302
    • /
    • 2002
  • An efficient method is developed to obtain the maximum capacity flow for a network when its simple paths are known. Most of the existing techniques need to convert simple paths into minimal cuts, or to determine the order of simple paths to be applied in the process to reach the correct result. In this paper, we propose a method based on the concepts of signed simple path and signed flow defined in the text. Our method involves a fewer number of arithmetic operations at each iteration, and requires fewer iterations in the whole process than the existing methods. Our method can be easily extended to a mixed network with a slight modification. Furthermore, the correctness of our method does not depend on the order of simple paths to be applied in the process.

  • PDF

An Improved Method of Evaluation of Network Reliability with Variable Link-Capacities

  • Lee, Chong-Hyung;Park, Dong-Ho;Lee, Seung-Min
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.455-462
    • /
    • 2001
  • We propose a new method to evaluate the network reliability which greatly reduces the intermediate steps toward calculations of maximum capacity flow by excluding unnecessary simple paths contained in the set of failure simple paths. By using signed simple paths and signed flow, we show that our method is more efficient than that of Lee and Park (2001a) in the number of generated composite paths and in the procedure for obtaining minimal success composite paths. Numerical examples are given to illustrate the use and the efficiency of the method.

  • PDF

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

Robust process fault diagnosis with uncertain data

  • Lee, Gi-Baek;Mo, Kyung-Joo;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.283-286
    • /
    • 1996
  • This study suggests a new methodology for the fault diagnosis based on the signed digraph in developing the fault diagnosis system of a boiler plant. The suggested methodology uses the new model, fault-effect tree. The SDG has the advantage, which is simple and graphical to represent the causal relationship between process variables, and therefore is easy to understand. However, it cannot handle the broken path cases arisen from data uncertainty as it assumes consistent path. The FET is based on the SDG to utilize the advantages of the SDG, and also covers the above problem. The proposed FET model is constructed by clustering of measured variables, decomposing knowledge base and searching the fault propagation path from the possible faults. The search is performed automatically. The fault diagnosis system for a boiler plant, ENDS was constructed using the expert system shell G2 and the advantages of the presented method were confirmed through case studies.

  • PDF

Novel Radix-26 DF IFFT Processor with Low Computational Complexity (연산복잡도가 적은 radix-26 FFT 프로세서)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Fast Fourier transform (FFT) processors have been widely used in various application such as communications, image, and biomedical signal processing. Especially, high-performance and low-power FFT processing is indispensable in OFDM-based communication systems. This paper presents a novel radix-26 FFT algorithm with low computational complexity and high hardware efficiency. Applying a 7-dimensional index mapping, the twiddle factor is decomposed and then radix-26 FFT algorithm is derived. The proposed algorithm has a simple twiddle factor sequence and a small number of complex multiplications, which can reduce the memory size for storing the twiddle factor. When the coefficient of twiddle factor is small, complex constant multipliers can be used efficiently instead of complex multipliers. Complex constant multipliers can be designed more efficiently using canonic signed digit (CSD) and common subexpression elimination (CSE) algorithm. An efficient complex constant multiplier design method for the twiddle factor multiplication used in the proposed radix-26 algorithm is proposed applying CSD and CSE algorithm. To evaluate performance of the previous and the proposed methods, 256-point single-path delay feedback (SDF) FFT is designed and synthesized into FPGA. The proposed algorithm uses about 10% less hardware than the previous algorithm.