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Finding the Maximum Flow in a Network
with Simple Paths

Seung Min Leel), Chong Hyung Lee2), Dong Ho Park3

Abstract

An efficient method is developed to obtain the maximum flow for a network when
its simple paths are known. Most of the existing techniques need to convert simple
paths into minimal cuts, or to determine the order of simple paths to be applied in
the process to reach the correct result.

In this paper, we propose a method based on the concepts of signed simple path
and signed flow defined in the text. Our method involves a fewer number of
arithmetic operations at each iteration, and requires fewer iterations in the whole
process than the existing methods. Our method can be easily extended to a mixed
network with a slight modification. Furthermore, the correctness of our method does
not depend on the order of simple paths to be applied in the process.
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1. Introduction

Assumptions
1. The nodes are perfect and each has no capacity limit.
2. All the links are undirected and each link flow is bounded by the link capacity.
3. No flow can be transmitted through a failed link.
4. The simple paths of the network, considering connectivity only, are known.

A network is modeled as a graph G(V,E), which consists of a set V of nodes and a set E
of links where each link may have different capacity. To develop an efficient method for
computing the maximum flow for a network with variable link—capacities has attracted a great
deal of attention in the literature. Recently, a number of methods have been proposed for this
purpose, especially for the evaluation of the measures closely related with network
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performance under the assumption that the simple paths of the network are known. The
methods suggested by Aggarwal(1988), Aggarwal, Chopra and Bajwa(1982), Misra and
Prasad(1982) and Varshney, Joshi and Chang(1994) vield incorrect results for certain situations.
Aggarwal(1988) mentions that the method in Aggarwal, Chopra and Bajwa(1982) lacks
generality, and Schanzer(1995) discusses the drawbacks of the methods in Aggarwal(1988) and
Varshney, Joshi and Chang(1994). Rai and Soh(1991) presents counter examples to show that
the methods of Aggarwal(1988) and Misra and Prasad(1982) fail in certain cases. The method
of Rai and Soh(1991) complements the drawbacks of the preceding results, but needs extra
efforts of converting the given simple paths into minimal cuts and computes the sum of all
link capacities for each minimal cut. Kyandoghere(1998) computes and keeps, at each iteration,
the residual-capacity of the network and other quantities for each simple path to determine
the next simple path to be applied. Hence, the method is affected by the order in that each
simple path is applied.

In this paper, we select, at each iteration, a flow augmenting simple path based on the
concepts of signed simple path and signed flow defined in the text. The correctness of our
method is guaranteed, regardless of the order of simple paths to be applied in the process
and, for efficiency, we may select a simple path which contains the smallest number of links
first. At each iteration, the selection procedure is simple and, by excluding unnecessary simple
paths beforehand, the selection is made only from the set of remaining simple paths of the
network. Thereby, our method involves a fewer number of arithmetic operations at each
iteration, and requires fewer iterations in the whole process to compute the maximum flow of
the given network than the existing methods do. In Section 2, we present the necessary
concepts to propose our method and a few definitions including signed simple path and signed
flow. Section 3 gives the detailed descriptions on the methodology and algorithm utilizing the
concepts defined in the previous section. Some examples are presented as well. In Section 4,
we further discuss the advantages of the proposed method when it is used in conjunction

with other processes.

2. Signed simple path and signed flow

Acronyms

ssp : signed simple path

sf ¢ signed flow

udl © uni-directional link

fassp : flow augmenting signed simple path

2.1 Signed Simple Path and Signed Flow
A simple path is an open edge train connecting the source node ( s) and the terminal node

( ¢), in which no node is traversed more than once. Let 7 be a link in the network and let P
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be a simple path which contains the link 7. When we traverse on P from s to { node by
node, the link ¢ is uniquely expressed as an edge (a, b) or ( b, a), where a and b are two
incident nodes connected by link i. We say that the link ¢ has the direction, in P, of a — b
if it appears as an edge ( @, b), and the direction of » — a otherwise. We call this the link
direction of i in P. We note that the link direction of 7 in P may be the same as or
opposite to that of the link 7 in another simple path. When the flow of positive amount
actually moves through link ¢, it has its moving direction. We call this the flow direction on
link 7. For an undirected network, the flow direction on link ¢/ may be either a — b or
b — a. We distinguish these two possible directions of @ — b and b — a by the signs

of ‘+" and ‘-’ , for example, a — b as ‘+ and b — g as ‘-’ , or vice versa.

Definition 1. A simple path P in which each edge is represented as a link signed by its link
direction in P is said to be a ssp P. Similarly, the flow on link 7 which is signed by its

flow direction is said to be the sf on .

Figure 1. Bridge Network

As an example, we consider the bridge network shown in Figure 1. Defining an order on
the nodes as s < a < b <t we use ‘+' for  — #n if n { #', and use ‘-’ otherwise.
The ‘+ sign may be omitted. There are four ssp: (1,4), (25), (1,3,5), (2,-34). The flow of
amount 10 moving b — a on link 3 is said to be the sf of =10 on link 3. The null sf has no
sign.

2.2 Flow Augmenting Signed Simple Path

Given the capacity vector ¢ = (c¢;,¢y, ", C,), Where c;(>0) denotes the link capacity
of 4, let f= (f,,f2,",f») be a feasible sf pattern of the network and let f; be the sf on
link 7 If f;= 0, then link 7 is said to be flowless. We consider a ssp P and a link 7 € P
which is not flowless. The flow direction of f; may be the same as or opposite to the link
direction of 7 in P. We say that link 7 is with forward sf f,; in P if they are the same, and

with reverse sf f; otherwise. We note that each link in P is one of the following three
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types: with forward sf, with reverse sf, or flowless. The link 7 in P is said to be saturated in
P, if f;is forward sfon 7in P and |f;|= c;.

Definition 2. A ssp P is said to be a fassp with respect to f if there is no saturated link
in P.

Let P be an fassp with respect to f. Now, let wy be the minimum of (c¢;—|f;|) taken
over all links with forward sf and all flowless links in P, and let w gy be the minimum of
| f:1's taken over all links with reverse sf in P. We define w = min(w g, w ), taken only
over existing terms. Then w would be the augmented amount of flow by P with respect to

£, and we adjust f accordingly to get a new sf pattern, f  say. We observe that the value
of net flow from s to ¢ of a sf pattern f is the maximum flow of the network if and only if
there is no more fassp with respect to f. Such an idea and the concept of fassp are similar to
those of flow augmenting path suggested for the directed networks. For detailed discussions,
see Chen(1990). We note that a ssp P, which is not an fassp with respect to f, can become
an fassp for a new sf pattern f°. On certain circumstances, however, we can identify the ssp

which would never become fassp and, hence, exclude them from further consideration in
computing maximum flow of the network. A link is said to be a udl, if the link direction of it

is the same in all ssp containing it. Suppose that a udl 7 is currently saturated in some ssp.
Then, any ssp containing ¢ would never become an fassp, since ¢ remains saturated
throughout. For the bridge network in Figure 1, all the links except 3 are udl.

3. Algorithm

In this section, we present thie algorithm to compute the maximum flow of a given network
and exemplify the use of algorithm by solving the bridge network of Figure 1. To establish
an algorithm, we start with the zero sf pattern f= (0,0,:-,0). At each iteration, we first

select the ssp P with the smallest number of links, which will be referred to as the shortest

ssp in the sequel. The selection of the shortest path reduces the number of augmentation. See,
for example, Chen(1990). If P is an fassp with respect to current f, then adjust f
accordingly. For each of the saturated udl/ in P, we remove all ssp containing it from further
consideration. The process stops when there is no more fassp left with respect to the current

f. In algorithm, we select the shortest ssp and check if it is an fassp. The order of ssp to
be applied may affect the efficiency of the algorithm, but not the correctness of the result.



Finding the Maximum Flow in a Network with Simple Paths 849

Notation for Algorithm

c link capacity vector, which is given

f  current sf pattern

MF  current value of maximum flow
AVSSP  set of available ssp
TEMPSSP  temporary set of AVSSP

sign(x)  integer-valued function; +1 if x>0, 0if x =0, and -1 if x<0.

3.1 Algorithm

1. Initialize f = (0,0,---,0), MF = (0 and AVSSP = { all ssp };
2. TEMPSSP = AVSSP;

3. Select the shortest ssp P in TEMPSSP;
if P is not an fassp then
begin
TEMPSSP = TEMPSSP — {P};
if TEMPSSP = @ then STOP else go to 3,
end;
for each 1 € P do
if sign(i) + sign( f;) =0 then w;= [f;| else w,= c;,—|f;l;
Set w = min ;,ep w; and MF = MF + w;
for each 7 € P do
begin
fi= fi+ sign(i) - w;
if |f;l= c¢; and 7is a udl then AVSSP = AVSSP — {P’'|ie P’ };
end;
Go to 2;

Example 1. Consider the bridge network in Figure 1, which has four ssp: (1,4), (25), (1,3,5),
(2,-3,4) and all links except 3 are udl. Let the capacity vector be given as ¢ = (2,6,25,3).

The saturated ud! are marked by ‘s’ in sf patterns. The process stops when there is no
more fassp left in AVSP, and the maximum flow of the network is computed as 7.
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Table 1. Process for Figure 1

fassp w | capacity vector f MF AVSSP
- - (2,6,2,5,3) (0,0,0,0,0) 0 | {14, 25), (1,35, (2,-34) }
14 | 2 (5,0,0,2,0) 2 1{@p), (2,-34)}
25 | 3 (s,3,0,2,8) 5 | {(2-34)}
(2-34) | 2 (s,5,-2,4,5) 7 1{©2-34)}

3.2 Mixed Networks

For a mixed network, we first find all ssp as being done for an undirected network. Note
that the link direction of ¢ in P does not depend on whether ¢ is directed or not. Now, for a
directed link, we call the pre-assigned direction of it in the network the arc-direction. A
directed link is said to be a reverse-arc in P, if the arc-direction is opposite to the link

direction of it in P. Since the flow cannot move reversely to the arc—direction on a directed
link, we slightly change the definition of an fassp as follows.

Definition 3. For a mixed network, a ssp P is said to be a fassp with respect to f if it

contains no saturated link in P and no flowless reverse-arc in P.

Example 2. For the bridge network presented in Figure 1, we suppose that all links are
directed links in ‘+  direction. Superscripting a reverse-arc in a ssp with ‘I’ , we have
four ssp: (1,4), (25), (1,35), (2,-3%4), and the set of udl is {1245 }. Note that (2,-3%4) is
no longer an fassp at the last step in Table 2, since it contains a flowless reverse-arc, i.e.
-3,

Table 2. Process for directed bridge network

fassp w | capacity vector f MF AVSSP

- - (2,6,2,5,3) (0,0,0,0,0) 0 | {Q,9, 25), (1,35), 2-374)}
(14 | 2 (5,0,0,2,0) 2 1{@2p), 2,-3%4)}
25 | 3 (5,3,0,2,5) 5 [{©2-3%4}

4. Discussion

To evaluate the measures for network performance such as network reliability or
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performance index, a sequence of subnetworks are generated in succession one by one by
adding certain links to the current one, and then its corresponding maximum flow is computed
for each subnetwork generated. See, for example, Aggarwal(1988), Lee and Park(2001), Rai and
Soh(1991) and Varshney, Joshi and Chang(1994) for references. When a new subnetwork is
formed by adding certain links to the existing subnetwork, Kyandoghere’'s(1998) method
requires repeating the whole process all over again for the new subnetwork, since the residual
capacity for each simple path in the new subnetwork may be changed. Rai and Soh(1991) also
need to find all minimal cuts again and then, re-computes the sum of all link capacities for
each of the minimal cuts for the new subnetwork. On the other hand, since our method is not
dependent on the order of simple paths to be applied, the earlier steps already completed for
the given subnetwork need neither to be repeated nor to be altered. In consideration of the
complexity of the system that many reliability engineers usually face and the great number of
subnetworks generated in the evaluation process, our method would be working more
efficiently than the existing methods.
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