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Abstract

An efficient method is developed to obtain the maximum capacity flow for a network when
its simple paths are known. Most of the existing techniques need to convert simple paths into
minimal cuts, or to determine the order of simple paths to be applied in the process to reach
the correct result.

In this paper, we propose a method based on the concepts of signed simple path and signed
flow defined in the text. Our method involves a fewer number of arithmetic operations at each
iteration, and requires fewer iterations in the whole process than the existing methods. Our
method can be easily extended to a mixed network with a slight modification. Furthermore, the
correctness of our method does not depend on the order of simple paths to be applied in the

process.
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1. INTRODUCTION

A network is modeled as a graph G(V, E), which consists of a set V of nodes and a set
E of links where each link may have different capacity. To develop an efficient method for
computing the maximum flow for a network with variable link-capacities has attracted a great
deal of attention in the literature. Recently, a number of methods have been proposed for this
purpose, especially for the evaluation of the measures closely related with network performance

under the assumption that the simple paths of the network are known. The methods suggested
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by [1-2], [6] and [9] yield incorrect results for certain situations. Ref [1] mentions that the
method in [2] lacks generality, and [8] also discusses the drawbacks of the methods in [1] and [9].
Ref [7] presents counter examples to show that the methods of [1] and [6] fail in certain cases.
The method of [7] complements the drawbacks of the preceding results, but needs extra efforts
of converting the given simple paths into minimal cuts. Ref [4] computes and keeps, at each
iteration, the residual-capacity of the network and hence, the method is affected by the order
in that each simple path is applied.

In this paper, we select, at each iteration, a flow augmenting simple path based on the con-
cepts of signed simple path and signed flow defined in the text. The correctness of our method is
guaranteed, regardless of the order of simple paths to be applied in the process and, for efficiency,
we may select a simple path which contains the smallest number of links first. At each iteration,
the selection procedure is simple and, by excluding unnecessary simple paths beforehand, the
selection is made only from the set of remaining simple paths of the network. Thereby, our
method involves a fewer number of arithmetic operations at each iteration, and requires fewer
iterations in the whole process to compute the maximum flow of the given network than the

existing methods do.

2. SIGNED SIMPLE PATH AND SIGNED FLOW

2.1 Signed Simple Path and Signed Flow

A simple path is an open edge train connecting the source node (s) and the terminal node
(t), in which no node is traversed more than once. Let ¢ be a link in the network and let P
be a simple path which contains the link . When we traverse on P from s to ¢ node by node,
the link ¢ is uniquely expressed as an edge (a,b) or (b,a), where a and b are two incident nodes
connected by link i. We say that the link 4 has the direction, in P, of a — b if it appears as an
edge (a,b), and the direction of b — a otherwise. We call this the link direction of i in P. We
note that the link direction of 7 in P may be the same as or opposite to that of the link i in
another simple path.

When the flow of positive amount actually moves through link 7, it has its moving direc-
tion. We call this the flow direction on link i. For an undirected network, the flow direction

on link ¢ may be either a — b or b — a. We distinguish these two possible directions of a — b
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and b — a by the signes of '+’ and ’—’, for example, @ — b as '+’ and b — a as '—’, or vice versa.

Definition 1. A simple path P in which each edge is represented as a link signed by its link
directon in P is said to be a signed simple path P. Similarly, the flow on link ¢ which is signed

by its flow direction is said to be the signed flow on i.
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Figure 1. Bridge Network

As an example, we consider the bridge network shown in Figure 1. Defining an order on the
nodes as s < a < b < t, we use '+ forn — n' if n < n’, and use '—’ otherwise. The + sign
may be omitted. There are four signed simple paths: (1,4), (2,5), (1,3,5), (2,—3,4). The flow of
amount 10 moving b — a on link 3 is said to be the signed flow of —10 on link 3. The null flow

has no sign. Hereafter, a simple path and flow mean a signed simple path and signed flow.

2.2 Flow Augmenting Simple Path

Given the capacity vector ¢ = (c1,¢p,- -, ¢,), where ¢;(> 0) denotes the link capacity of 1,
let f = (f1, f2,+ -+, fa) be a feasible flow pattern of the network and let f; be the flow on link 3.
If f; = 0, then link ¢ is said to be flowless. We consider a simple path P and a link ; € P which
is not flowless. The flow direction of f; may be the same as or opposite to the link direction of
¢ in P. We say that link 7 is with forward flow f; in P if they are the same, and with reverse
flow f; otherwise. We note that each link in P is one of the following three types: with forward
flow, with reverse flow, or flowless. The link 7 in P is said to be saturated in P, if f; is forward

flow on i in P and |fi] = ¢;.

Definition 2. A simple path P is said to be a flow augmenting simple path ( fasp) with respect
to f if there is no saturated link in P.

Let P be an fasp with respect to f. Now, let wr be the minimum of (¢; — |f;|) taken over
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all links with forward flow and all flowless links in P, and let wg be the minimum of | f;|’s taken
over all links with reverse flow in P. We define w = min(wp, wg), taken only over existing
terms. Then w would be the augmented amount of flow by P with respect to f, and we adjust
f accordingly to get a new flow pattern, f* say. We observe that the value of net flow from s to
t of a flow pattern f is the maximum flow of the network if and only if there is no more fasp

with respect to f.

3. ALGORITHM

In this section, we present the algorithm to compute the maximum flow of a given network
and exemplify the use of algorithm by solving the bridge network of Figure 1. To establish an
algorithm, we start with the zero flow pattern f = (0,0,---,0). At each iteration, we first select
the simple path P with the smallest number of links, which will be referred to as the shortest
simple path in the sequel. If P is an fasp with respect to current f, then adjust f accordingly.
For each of the saturated uni-directional links in P, we remove all simple paths containing it
from further consideration. The process stops when there is no more fasp left with respect
to the current f. In algorithm, we select the shortest simple path and check if it is an fasp.
The order of simple paths to be applied may affect the efficiency of the algorithm, but not the

correctness of the result.

c link capacity vector, which is given

f current flow pattern

MF current amount of net flow from s to ¢, for computing maximum capacity flow
AVSP set of available simple paths

TEMPSP temporary set of AVSP
sign(z) integer-valued function; +1if £ > 0,0if z =0, and —1 if z < 0.

3.1 Algorithm
1. Initialize f = (0,0,---,0), MF= 0 and AVSP={ all simple paths };

2. TEMPSP=AVSP;
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3. Select the shortest simple path P in TEMPSP;
if P is not an fasp then
begin
TEMPSP=TEMPSP—{P}:
if TEMPSP= @ then STOP else go to 3;
end;
for each : € P do
if sign(i) + sign(f;) = 0 then w; = |f;| else w; = ¢; — | fil;
Set w = min,cpw; and MF=MF+w;
for each i € P do
begin
fi = fi + sign(i) x w;
if | f;| = ¢; and i is uni-directional then AVSP=AVSP—{P'|i € P'};
end;

Go to 2;

Example 1. Consider the bridge network in Figure 1, which has four simple paths: (1,4), (2,5),
(1,3,5), (2,—3,4) and all links except 3 are uni-directional. Let the capacity vector be given as
¢ = (2,6,2,5,3). The saturated uni-directional links are marked by ’s’ in flow patterns. The

process stops, when there is no more fasp left in AVSP.

Table 1 : Process for Figure 1

fasp | w | capacity vector f MF | AVSP
- - (2,62,53) (0,0,0,0,0 | 0 |{(1,4),(2,5),(1,3,5),(2,-3,4)}
1,4) |2 (5,0,02,0) | 2 |{(25),(2,-3,4)}
25) |3 (5,3,0,2,5) | 5 |{(2,-3,4)}
(2,-34) | 2 (s,5,—24,8) | 7 |{(2,-34)}

4. DISCUSSION

To evaluate the measures for network performance such as network reliability or performance

index, a sequence of subnetworks are generated in succession one by one by adding certain links
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to the current one, and then its corresponding maximum flow is computed for each subnetwork

generated. See, for example, [1], [5], [7] and [9] for references. since our method is not dependent

on the order of simple paths to be applied, the earlier steps already completed for the given

subnetwork need neither to be repeated nor to be altered. In consideration of the complexity

of the system that many reliability engineers usually face and the great number of subnetworks

generated in the evaluation process, our method would be working more efficiently than the

existing methods.
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