• Title/Summary/Keyword: Signal Processing Circuit

Search Result 370, Processing Time 0.034 seconds

Sensor signal processing device for USN application and general purpose (USN응용과 범용목적에 적용가능한 센서 신호처리기)

  • Park, Chan-Won;Kim, Il-Hwan;Chun, Sam-Sug
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.230-237
    • /
    • 2010
  • In sensor signal conditioning and processing, offset and drift characteristics of an operational amplifier are an important factor when the amplifier is used for a precise sensor signal amplifier. In order to use it in high accuracy, an expensive trimming or a complex compensation circuit is required. This paper presents the improved sensor signal conditioning and processing device for ubiquitous sensor network(USN) application or general purpose by developing a hardware of the circuit for reducing the offset voltage and drift characteristics, and a software for its control and sensor signal processing. We realize better offset voltage and drift characteristics of the signal conditioning circuit using low cost operational amplifiers. The experimental results show that this technique is effective in improving the performance of the sensor signal processing device.

A Digital Signal Processing Circuit Design for Position Sensitive Detectors(PSD), using an FPGA

  • Bongsu Hahn;Park, Changhwan;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.1-107
    • /
    • 2001
  • In this paper, a digital signal processing circuit for Position Sensitive Detectors(PSDs) is introduced to substitute the conventional analog signal processing circuit and to compensate disadvantages of the PSD. In general, the analog circuits have the problems such as noise accumulation, sensitivity for environmental changes, and high cost for manufacturing. Moreover, the intrinsic nonlinearity problem of the PSD makes it hard to measure the position accurately because it is difficult to be overcome the problem by using the conventional analog circuits, which can be solved by using the digital signal processing circuit. The circuit is implemented by using a Field Programmable Gate Array (FPGA). The Pulse Amplitude Modulation(PAM) method is used for reducing the environmental noise effect, and a linear interpolation logic is used to compensate the ...

  • PDF

A Study on Signal Processing Using Multiple-Valued Logic Functions (디치논리 함수를 이용한 신호처리 연구)

  • 성현경;강성수;김흥수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1878-1888
    • /
    • 1990
  • In this paper, the input-output interconnection method of the multi-valued signal processing circuit using perfect Shuffle technique and Kronecker product is discussed. Using this method, the design method of circuit of the multi-valued Reed-Muller expansions(MRME) to be used the multi-valued signal processing on finite field GF(p**m) is presented. The proposed input-output interconnection method is shown that the matrix transform is efficient and that the module structure is easy. The circuit design of MRME on FG(p**m) is realized following as` 1) contructing the baisc gates on GF(3) by CMOS T gate, 2) designing the basic cells to be implemented the transform and inverse transform matrix of MRME using these basic gates, 3) interconnecting these cells by the input-output interconnecting method of the multivalued signal processing circuits. Also, the circuit design of the multi-valued signal processing function on GF(3\ulcorner similar to Winograd algorithm of 3x3 array of DFT (discrete fourier transform) is realized by interconnection of Perfect Shuffle technique and Kronecker product. The presented multi-valued signal processing circuits that are simple and regular for wire routing and posses the properties of concurrency and modularity are suitable for VLSI.

  • PDF

Design and Fabrication of VTR Audio Signal Processor IC (VTR 음성신호 처리용 집적회로의 설계 및 제작)

  • Shin, Myung-Chul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.618-624
    • /
    • 1987
  • This paper describes the design and fabrication of a signal processing integrated circuit required for the recording and playback of VTR audio signal. The integrated circuit was designed using 8\ulcorner design rule and its chip size is 2.5x2.5mm\ulcorner It was fabricated using SST bipolar standard process technology. The measurement analysis of the fabricated circuit proves the satisfactory DC characteristics and its proper audio signal processing funcstion.

  • PDF

Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors Using a Commercial Single Chip Solution (상용 Single Chip Solution을 이용한 정전용량형 변위 센서 신호 처리 모듈 개발)

  • Kim J.A.;Kim J.W.;Eom T.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.31-32
    • /
    • 2006
  • A signal conditioning circuit for capacitive sensors was developed using a commercial single chip solution. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. Up to now, several companies already have succeeded in the development of the capacitive sensors system and they are commercially available in the market. In this research, to construct the signal processing circuits more easily and simply, we used a universal LVDT signal conditioner (AD698). Since the AD698 provides one chip solution for a basic signal processing including modulation and demodulation using various internal components, we can build the processing circuits successfully with minimal additional circuits: a compensation circuits for the drift caused by the bias current of OP amplifiers and a fine adjustment circuit for the elimination of nonlinearity. The signal processing circuits shows nonlinearity less than 0.05% in the comparison with a laser interferometer.

  • PDF

Digital-Radio Converter using Vector Synthesis Method (벡터합성방법에 의한 디지털-무선 변환장치의 연구)

  • 주창복;김성호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.65-68
    • /
    • 2000
  • In this paper, as a compatible software radio transmission system, Digital-Radio conversion system which can directly change the digital signal generated by the logic circuit into radio signal is proposed. By the vector synthesis method, the digital signals can change directly into radio signal. If such a circuit is realized, RF circuit and an antenna can be composed by the simple one device, and the radio is directly controlled and performed by the software processing which is the essence of software radio. This Digital-Radio conversion system of this paper give many number of communication channels being offered by PN code and offer a hardware design flexibility by digitization, therefore it decrease the percentage ratio of hardware of system and give a more flexible function of software basis. In this paper, this proposed Digital-Radio conversion system is called D/R converter, and the principle of this D/R converter, radio signal generation algorithm is explained and the performance characteristics of proposed algorithm is shown in time base by the computer simulation method.

  • PDF

Time-Domain Analog Signal Processing Techniques

  • Kang, Jin-Gyu;Kim, Kyungmin;Yoo, Changsik
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.2
    • /
    • pp.64-73
    • /
    • 2020
  • As CMOS technology scales down, the design of analog signal processing circuit becomes far more difficult because of steadily decreasing supply voltage and smaller intrinsic gain of transistors. With sub-1V supply voltage, the conventional analog signal processing relying on high-gain amplifiers is not an effective solution and different approach has to be sought. One of the promising approaches is "time-domain analog signal processing" which exploits the improving switching speed of transistors in a scaled CMOS technology. In this paper, various time-domain analog signal processing techniques are explained with some experimental results.

High Performance Circuit Design of a Capacitive Type Fingerprint Sensor Signal Processing (고성능 용량 형 지문센서 신호처리 회로 설계)

  • 정승민;이문기
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.109-114
    • /
    • 2004
  • This paper proposes an advanced circuit for the fingerprint sensor signal processing. We increased the voltage between ridge and valley by modifying the parasitic capacitance eliminating circuit of sensor plate. The analog comparator was designed for comparing the sensor signal voltage with the reference signal voltage. We also propose an effective isolation strategy for removing noise and signal coupling of each sensor pixel. The fingerprint sensor circuit was designed and simulated, and the layout was performed.

Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors and Performance Evaluation (정전용량형 변위 센서 신호 처리 회로 개발 및 성능 평가)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Eom, Tae-Bong;Kang, Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.60-67
    • /
    • 2007
  • A signal conditioning circuit for capacitive displacement sensors was developed using a high frequency modulation/demodulation method, and its performance was evaluated. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. The developed signal processing circuit consists of three parts: linearization, modulation/demodulation, and nonlinearity compensation. Each part was constructed discretely using several IC chips and passive elements. An evaluation system for precision displacement sensors was developed using a laser interferometer, a precision stage, and a PID position controller. The signal processing circuit was tested using the evaluation system in the respect of resolution, repeatability, linearity, and so on. From the experimental results, we know that a highly linear voltage output can be obtained successfully, which is proportional to displacement and the nonlinearity of output is less than 0.02% of full range. However, in the future, further investigation is required to reduce noise level and phase delay due to a low-pass filter. The evaluation system also can be applied effectively to calibration and evaluation of precision sensors and stages.

Design of Signal Processing Circuit for Semi-implantable Middle Ear Hearing Device with Bellows Transducer (벨로즈형 진동체를 갖는 반이식형 인공중이용 신호처리회로 설계)

  • Kim, Jong Hoon;Shin, Dong Ho;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • In this paper, a signal processing circuit for semi-implantable middle ear hearing device is designed using the TCBT which is recently proposed for a new middle ear transducer that can be implanted at round window of cochlea. The designed semi-implantable hearing device transmits digital sound signal from external device located at behind the ear to the internal device implanted under the skin using inductive coupling link methods with high efficiency. The coils and signal processing circuits are designed and implemented considering the total transmission and reception distance including skin thickness of temporal bone for the semi-implantable hearing device. And also, to improve the data transmission efficiency, the output circuits which can supply sufficient signal power is designed. In order to confirm operation of semi-implantable hearing device using inductive coupling link, the circuit analysis was performed using PSpice, and the performance was verified by implementing a signal processing board of an available size.