• Title/Summary/Keyword: Signal Detection Probability

Search Result 243, Processing Time 0.035 seconds

Signal Energy-based Cyclostationary Spectrum Sensing for Wireless Sensor Networks (무선센서네트워크를 위한 신호 에너지 기반 사이클로스테이셔너리 스펙트럼 검출)

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.119-122
    • /
    • 2016
  • Feature detection is recognized as an accurate spectrum sensing approach when the information of the desired signal is partly known at the receiver. This type of detection was proposed to overcome large noise environment. Cyclostationary detection is an example of feature detection in spectrum sensing technique in cognitive radio. However, the cyclostationary process calculation requires a lot of processing time and information about the designed signals. On the other hand, energy detection spectrum sensing is widely known as a simple and compact spectrum sensing technique. However, energy detection is highly affected by large noise and lead to high detection error probability. In this paper, the combination of energy detection and cyclostationary is proposed in order to increase the accuracy and decrease the calculation and processing time. The two-layer threshold is utilized in order to reduce the complexity of computation and processing time in cyclostationary which can lead to the improved throughput of the system. The simulation result shows that the implementation of energy-based cyclostationary detector can help to improve the performance of the system while it can considerably reduce the required time for signal detection.

Performance Analysis of Frame Synchronization and Structure Detection Utilizing Multiple Frames of the DVB-S2 Satellite Broadcasting System (다수개 프레임을 활용한 DVB-S2 위성방송 시스템의 프레임 동기 및 구조 검출 성능 분석)

  • Kim, Sang-Tae;Kang, Seok-Heon;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.139-147
    • /
    • 2008
  • DVB-S2 (Digital Video Broadcasting-Satellite, Version 2) system transmits frames which adapt their structures based on the channel conditions, thus requiring simultaneous detection of the start of the Same (SoF) and the frame structure at the initial acquisition stage of the receiver. Also, a very low value of the minimum operating signal-to-noise ratio (SNR) for the acquisition necessitates a method utilizing multiple received frames to meet the required performance. In this paper, performance of joint time synchronization and frame structure detection methods using multiple DVB-S2 frames is evaluated by deriving the detection error probability. In particular, we evaluate the performance and complexity variations when the soft- and hard-decision values of the signal correlation output are used, present the synchronization parameters to optimize the performance, and verify the analysis results via computer simulations.

PN code Acquisition Method Using Array Antenna Systems for DS/CDMA (DS/CDMA 배열 안테나 시스템에서 PN 동기 획득 방법)

  • Cho, Hui-Nam;Choi, Seung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.196-199
    • /
    • 2004
  • This paper presents a structure of the searcher using the space diversity in array antenna system operating in the DS/CDMA signal environments. The new technique exploits the fact that the In-phase and Quadrature components of interferers can respectively be viewed as independent Gaussian noise at each antenna element in most practical CDMA (Code Division Multiple Access) signal environments. The proposed PN acquisition scheme is a single dwell serial PN acquisition system consisting of two stage, that is, the searching stage and the verification stage. The searching stage correlates the received signals with the local PN oscilator for obtaining the synchronous energy at the entire uncertainty region. The verification stage compares the searching energy with the optimal threshold, which is pre-designed in the Lock-Detector, and decides whether the acquisition is successful or fail. In this paper, we analyzed the relationship of both diversity order and the mean acquisition time. In general, It is known that the mean acquisition time decreases significantly as the number of antenna elements increases. But, the enhancement of the performance is saturated in terms of PN acquisition scheme. Therefore, to decrease the mean acquisition time, we must design the optimal array antenna system by considering the operating SNR range of the receiver, the detection probability, and the false alarm probability. The performance of the proposed acquisition scheme is analyzed in frequency-selective Rayleigh fading channels. In this paper, the effect of the number of antenna elements on acquisition scheme is considered in terms of the detection probability, false alarm probability. and the mean acquisition time.

  • PDF

Tracking Capability Analysis of ARGO-M Satellite Laser Ranging System for STSAT-2 and KOMPSAT-5

  • Lim, Hyung-Chul;Seo, Yoon-Kyung;Na, Ja-Kyung;Bang, Seong-Cheol;Lee, Jin-Young;Cho, Jung-Hyun;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • Korea Astronomy and Space Science Institute (KASI) has developed a mobile satellite laser ranging (SLR) system called ARGO-M since 2008 for space geodesy research and precise orbit determination technologies using SLR with mm level accuracy. ARGO-M is capable of night tracking and daylight tracking for which requires spatial, spectral and time filters due to high background noises. In this study, characteristics and specifications of ARGO-M are discussed and its tracking capabilities of night and daylight tracking are analyzed for STSAT-2B and KOMPSAT-5 through link budget. Additionally false alarm and signal detection probabilities are also analyzed depending on spectral and time filters for daylight tracking for these satellites.

Reweighted L1-Minimization via Support Detection (Support 검출을 통한 reweighted L1-최소화 알고리즘)

  • Lee, Hyuk;Kwon, Seok-Beop;Shim, Byong-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2011
  • Recent work in compressed sensing theory shows that $M{\times}N$ independent and identically distributed sensing matrix whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if $M{\ll}N$. In particular, it is well understood that the $L_1$-minimization algorithm is able to recover sparse signals from incomplete measurements. In this paper, we propose a novel sparse signal reconstruction method that is based on the reweighted $L_1$-minimization via support detection.

Synchronization Scheme for CCSK based LPD Systems (CCSK 변조방식을 사용하는 LPD 시스템을 위한 동기 기법)

  • Kang, Donghoon;Kim, Haeun;Oh, Wangrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.3-9
    • /
    • 2015
  • In this paper, we propose an initial timing and frequency synchronization scheme for low probability detection (LPD) systems with cyclic code shift keying (CCSK). The performance of the LPD system with CCSK highly depend on initial timing and frequency offset. On the other hand, the operating SNR (Signal-to-Noise Ratio) of LPD systems is usually very low. Hence, to guarantee a reliable performance of the LPD system, it is crucial to develop suitable initial synchronization algorithms. In this paper, we propose an initial timing and frequency synchronization scheme suitable for CCSK based LPD system using a repeated preamble pattern.

Introduction of Military Nanosatellite Communication System Using Anti-Jamming and Low Probability of Detection (LPD) Waveforms (항재밍/저피탐 웨이브폼이 적용된 군 초소형 위성 통신체계 소개)

  • Ju Hyung Lee;Hae-Won Park;Kil Soo Jeong
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.144-153
    • /
    • 2023
  • The existing military satellite communication system was based on geostationary satellites equipped with special communication payloads against enemy's jamming and signal reception. With the advent of new weapon systems such as unmanned systems, the need for low-orbit satellite-based communication system is increasing. This paper introduces various waveform technologies suitable for cube satellite-based communication system and the operational concept of a future military nanosatellite communication system.

Study on the Radar Detection Probability Change Considering Environmental Attenuation Factor (환경감쇠인자를 고려한 레이더 탐지 확률 변화에 관한 연구)

  • Kim, Young-Woong;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.23-28
    • /
    • 2015
  • The detection field is an important sector of the factors influencing the battle field. Basically, The radar emits a radio wave to perform the detection in the existing way. However, When most existing radars identify target by signal processing to return radio wave, Environmental attenuation factor does not reflected. The radar using this radio wave has got the possibility changing detect result depending on attenuation factor by environmental conditions, The operational problems may arise in a real battle field. Therefore, In this paper, When emitted radio waves were come back, Reflecting the environmental attenuation factor, Experimental attempts to identify the target to enable more accurately.

A Traffic Accident Detection and Analysis System at Intersections using Probability-based Hierarchical Network (확률기반 계층적 네트워크를 활용한 교차로 교통사고 인식 및 분석 시스템)

  • Hwang, Ju-Won;Lee, Young-Seol;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.995-999
    • /
    • 2010
  • Every year, traffic accidents and traffic congestion have been rapidly increasing, Although the roadway design and signal system have been improved to relieve traffic accidents, traffic casualties and property damage do not decrease. This paper develops a real-time traffic accident detection and analysis system (RTADAS): In the proposed system, we aim to precisely detect traffic accidents at different design and flow of intersections, However, because the data collected from intersections have uncertainty and complicated causal dependency between them, we construct probability-based networks for correct accident detection.

Combining approach in Fault Detection and Isolation for GPS applications

  • Chey, Jay-Won;Jee, Gyu-In;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1949-1952
    • /
    • 2004
  • GPS is widely used for outdoor positioning in many applications. But it is not suitable for positioning in an obstacle environment such as urban area, tunnels and so on, due to variable signal level. So new technology of the positioning is required to provide the consistent error level regardless of any changes in any environment. Abrupt changes of GPS signal can be detected by various fault detection and isolation methods. Conventional FDI (Fault Detection and Isolation) methods are categorized into two approaches. One approach is the snapshot method that uses measurements only at present step. The other approach is the filtering method that uses measurements stacked from previous step to present step. The FDI result of the snapshot method can be considered reliable independently with previous results and the FDI result of the filtering method is more reliable and detection time is a little longer. Therefore combining approach of two methods is proposed for increasing FDI performance in this paper. Three approaches that are the snapshot method, the filtering method and the combining method are compared to show the probability of correct FDI in simulations. The combining approach presents best result of FDI among them and shows the consistent accuracy irrespective of any changes in outdoor environment.

  • PDF