기존의 프랙탈 복원방법은 모든 치역영역에 대해 반복축소변환을 수행하였다 그러나 일부영역은 반복축소변환 없이 복원 가능하고, 데이타 의존영역이 존재한다 $R{\times}R$ 치역을 복원하기 위해서 $2R{\times}2R$ 정의역이 필요하다 이러한 복원과정은 의존그래프로 해석이 가능하다 치역은 정점에 해당하고, 정점은 치역정점과 정의역 정점으로 구분한다 에지는 정의역 정점이 다른 치역정점에 참조됨을 나타낸다 치역정점으로 들어오는 에지 수를 입력수, 치역정점에서 나가는 에지 수를 출력수로 정의한다 제한한 방법은 프랙탈 코드를 의존그래프로 해석하고 복원되는 정정의 순서를 재구성하여 출력수의 정보를 이용한다 즉 정점의 출력수가 영이면, 그 정점은 다론 정점에게 참조되지 않는 정점으로서 데이타 의존영역이 되는 정점이다 이와 같이 복원 되는 정점의 순서를 재구성함으로서, 데이타 의존영역을 확장하여 반복축소변환이 필요한 영역을 최소화한다 그 결과 화질에는 거의 영향을 미치지 않고, 복원과정에서의 불필요한 계산량을 제거하여 고속 복원이 가능하다.
본 논문에서는 V-BLAST (Vertical-Bell-lab Layered Space Time) 복호 알고리즘의 ordering과 slicing 과정에 MAP(Maximum A Posteriori) 디코더의 외부 정보 (extrinsic information)를 이용한 최적의 터보 부호화된 (Optimal Turbo Coded) V-BLAST 적응 변조 시스템을 제안 후 성능을 관찰한다. 외부정보는 ordering과 slicing에 사전 확률 (a priori probability) 로서 사용되며 시스템 복호 과정은 주 반복 (Main Iteration) 및 부 반복 (Sub Iteration) 과정으로 이루어진다. 채널 상태에 따라 변조 방식을 달리하는 적응 변조 시스템을 기존의 터보 부호화 (Turbo Coding) 된 V-BLAST 시스템과 최적의 터보 부호화된 V-BLAST 시스템에 각각 적용하고 전송률 (throughput) 을 비교하여 제안된 시스템을 적용할 경우 어느 정도의 성능 개선이 있는가를 살펴본다. 또한, 제안된 시스템에 선택적 전송 다이버시티 (STD : Selection Transmit Diversity) 기법을 적용한 후 성능의 향상을 관찰한다. 모의 실험결과, 적응 변조 시스템에서 최적의 터보 부호화된 V-BLAST 기법을 적용한 경우가 기존의 터보 부호화된 V-BLAST 기법을 적용한 경우에 비하여 11 dB의 SNR (Signal to Noise Ratio) 영역에서 최대 약 350 kbps의 전송률 향상이 나타났다. 특히, 제안된 시스템에 선택적 전송 다이버시티가 적용된 경우에는 송수신 안테나가 각각 2개인 기존의 터보 부호화된 V-BLAST 기법을 적용한 시스템의 경우에 비하여 같은 SNR 영역에서 최대 약 1.77 Mbps의 전송률이 개선됨을 보였다.
VANET에서 차량은 사고나 예기치 못한 긴급 상황에 관한 정보를 감지하고 이 정보를 뒤따르는 차량들에게 전파함과 동시에 서버에 전달한다. 하지만 긴급메시지의 전파는 방송 전송 방식을 취하게 되고 방송메시지의 다량 발생 즉, 폭풍 현상을 유발하게 된다. 본 논문에서는 이러한 문제점을 해결코자 전파전달범위내에서 가장 먼 곳에 위한 차량을 선출하는 방법을 사용하고 특히, 수신 패킷의 SNR에 따른 송신자와의 상대적 위치를 이용한 SNR 기반 백오프 방법을 검토한다. 상대적 위치를 통해 송신자에서 가장 멀리 떨어진 노드가 상재적으로 짧은 백오프 시간을 갖고 전달 과정에 참여케 됨으로써 다른 노드들은 이를 엿듣게 되어 전달자 임무를 포기하게 된다. NS-3 VANET 시뮬레이션 환경을 구축하여 WiFi-IP 게이트웨이 기반 서비스 네트워크에 대해서 SNR 기반 백오프 방식을 포함한 긴급 메시지 전송방식들을 시뮬레이션을 수행하였다. 다른 일반 방송 방식에 비해 SNR 기반 백오프 방식이 1/20 정도 전송횟수의 감소를 보이면서도 최적의 전파지연시간과 홉 수를 통해 긴급메시지 전파능력을 보여준다.
업샘플링 깊이맵은 깊이 카메라로부터 획득된 깊이맵의 공간 해상도를 증가시키는 방법이다. 깊이맵의 성능은 입체영상, 멀티뷰의 3D 입체감과 밀접한 관계가 있다. PSNR 등의 객관적 메트릭으로 깊이맵의 업샘플링 성능을 평가하고, 생성된 입체영상은 주관적 평가를 통해서 입체감 및 시각적 피로도를 조사한다. 후자의 주관적 평가는 인적 물적 자원을 필요로 하는 반면에, 전자의 객관적 메트릭은 수학적 표현으로 정량적 수치값을 알려준다. 따라서 주관적 평가와 높은 상관관계를 가지는 객관적 메트릭이 주관적 평가를 대체할 수 있다면 많이 시간을 필요로 하는 주관적 평가가 불필요하다. 이를 위해 본 논문에서는 다양한 객관적 메트릭과 3D 주관적 평가 사이의 관계를 조사한 후에, 이용한 메트릭에 기반한 주관평가와 상관관계가 높은 객관적 메트릭을 제안한다. 업샘플링된 깊이맵의 성능을 측정하기 위해 다양한 참조영상 및 무참조영상 평가 메트릭들을 이용하였다. 주관적 평가는 DSCQS 입체영상 테스트로 수행되었다. 세 종류의 상관관계의 활용 및 분석을 통해서, SSIM과 Edge-PSNR이 주관적 평가를 대체할 수 있는 적합한 객관적 메트릭임을 실험을 통해서 검증하였다.
본 연구는 방사선을 이용한 검사 시 방사선 방어용 앞치마(apron)의 성능이 좋지 못할 경우 방사선 작업종사자의 피폭이 상대적으로 높아질 수밖에 없음에 따라 영상평가 프로그램인 Image J의 최대 신호 대 잡음비 값을 측정하여 융복합 방어 성능평가와, 우수한 성능의 apron을 구비 할 수 있는 기초자료를 도출하고, 선량계 없이도 성능 평가 방법의 접근을 용이하게 하여 주기적이고 철저한 apron관리의 용이성을 확보하고자 하였다. 각각 32벌의 apron 9군데의 최대 신호 대 잡음비 값을 비교한 결과 상태가 양호한 apron의 경우 27 dB이상으로 나타났고 상태가 불량한 apron의 경우 24 dB미만으로 측정되어 각각의 성능이 뚜렷하게 구별 되는 것이 확인되었다. 통계분석결과 정규성 분포를 보여 t-test를 실시한 결과 p<0.001로 두 결과 값은 통계적으로 유의하였다. 이에 따라 방사선 작업종사자의 방사선피폭을 최대한 줄이기 위해 선량계 없이 최대 신호 대 잡음비 값 측정만으로 apron의 성능 평가가 용이하여 방사선 작업종사자 및 환자의 불필요한 피폭 관리가 용이하게 되었다.
Kim, Yoo-Jun;Kim, Seon-Jeong;Kim, Geon-Tae;Choi, Byoung-Choel;Shim, Jae-Kwan;Kim, Byung-Gon
대한원격탐사학회지
/
제32권4호
/
pp.365-382
/
2016
The results from the Global Positioning System (GPS) measurements of the Mobile Observation Vehicle (MOVE) on the eastern coast of Korea have been compared with REFerence (REF) values from the fixed GPS sites to assess the performance of Precipitable Water Vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals had comparatively similar trends and fairly good agreements with REF-PWV with a Root-Mean-Square Error (RMSE) of 7.4 mm and $R^2$ of 0.61, indicating statistical significance with a p-value of 0.01. PWV retrievals from the June cases showed better agreement than those of the other month cases, with a mean bias of 2.1 mm and RMSE of 3.8 mm. We further investigated the relationships of the determinant factors of GPS signals with the PWV retrievals for detailed error analysis. As a result, both MultiPath (MP) errors of L1 and L2 pseudo-range had the best indices for the June cases, 0.75-0.99 m. We also found that both Position Dilution Of Precision (PDOP) and Signal to Noise Ratio (SNR) values in the June cases were better than those in other cases. That is, the analytical results of the key factors such as MP errors, PDOP, and SNR that can affect GPS signals should be considered for obtaining more stable performance. The data of MOVE can be used to provide water vapor information with high spatial and temporal resolutions in the case of dramatic changes of severe weather such as those frequently occurring in the Korean Peninsula.
근접장의 특성과 근접장 마이크로파 현미경의 배경이론을 설명하였고 유전체 공진기 제작에 앞서 HFSS (high frequency structure simulator)를 이용한 모의 시뮬레이션을 기술하였다. 이것을 바탕으로 원통형 유전체 공진기를 제작하여 금속탐침과 결합한 근접장 마이크로파 현미경(near field scanning microwave microscope : NSMM)을 구성하였다. 제작한 유전체 공진기의 특성은 HFSS를 이용하여 모의 실험한 결과와 비교하였다 Tip의 기하학적 모양에 따른 공간분해능과 감도(sensitivity)를 연구하였고 contrast가 가장 좋은 hybrid tip을 개발하였다. 전도도가 서로 다른 금속시료에 따른 NSMM의 반사계수의 변화를 측정하였고 실험결과와 이론적 시료의 임피던스를 비교하였다. 마지막으로 유전체 공진기를 이용한 NSMM으로 공간 분해능이 $1{\mu}m$의 Cr과 NiFe 패턴의 이미지를 비접촉, 비파괴방법으로 얻었다.
위성을 이용한 에어로졸 원격탐사에서 높은 공간해상도의 정보에 대한 요구가 많았음에도 그동안 단일화소가 갖는 물리적인 에어로졸 신호의 약화와 구름 등에 의한 오차 증가로 인해 산출에 어려움을 겪어왔다. 본 연구에서는 GOCI 자료를 이용하여 한-미 협력 국내 대기질 공동조사 캠페인 기간인 2016년 5, 6월에 대해 GOCI의 최대 공간 해상도인 500 m에서 고해상도 에어로졸 광학 깊이를 산출하였다. 기존의 GOCI 알고리즘은 6 km 해상도로 에어로졸 산출물을 제공해왔으며, 이번 연구에서 개발한 고해상도 산출 알고리즘은 기존 알고리즘을 기반으로 한다. 에어로졸 모형, 조견표 구성 및 역추산 과정은 동일하게 이용되었으나, 높은 해상도에서의 구름 제거 방법이 개선되었다. 그 결과, 몇 가지 사례에 대하여 6 km 산출물과 비교하였을 때 500 m 산출물의 분포 및 크기는 유사하게 나타났으나 공간 해상도가 높기 때문에 더 많은 화소에 대하여 산출되었다. 이에 따라 작은 규모의 구름 주위에서도 산출이 되었고, 에어로졸의 공간적인 변화를 세밀하게 살펴볼 수 있었다. 정확도 검증을 위하여 지상 관측 장비와 비교를 하였을 때 공간해상도가 크게 좋아졌음에도 상관 계수가 0.76, 기대 오차 내에 들어오는 비율이 51.1%로 6 km 산출물과 유사한 검증 결과를 보였다.
객체지향 분석-합성 부호화는 일련의 영상들을 여러 개의 동 객체로 분할한 후 각 객체의 움직임을 추정하고 보상한다. 그것은 각 객체에 있는 움직임 정보를 추정하기 위해 변환 파라미터 기법을 적용하는데 이때 변환 파라미터 기법은 그레디언트 연산자를 사용하기 때문에 매우 복잡한 계산이 요구된다. 본 논문의 목적은 객체지향 분석-합성 부호화에서 계층적 구조를 사용한 효율적인 변환파라미터 기법을 개발하는 것이다. 이러한 목표를 달성하기 위해 본 논문은 계층적 구조를 사용한 하이브리드 변환파라미터 추정 방법과 적응형 변환 파라미터 방법의 두 가지 알고리듬을 제안한다. 전자는 파라미터 검증 방법을 사용하는데 원 영상을 1/4로 축소한 저해상도 영상에서 파라미터 검증 처리 방법에 의해 6-파라미터 또는 8-파라미터로 추정한다. 후자는 동일한 계층적 방법을 적용한 다음 변환 파라미터를 적응적으로 추정하기 위해 temporal co-occurrence 행렬에 기반 한 움직임 량을 측정하는 움직임 판단기준을 사용한다. 이러한 방법은 고속이며, 병렬처리 기법을 사용할 경우 쉽게 하드웨어로 구현할 수 있는 이점이 있다. 이론 분석 및 모의시험 결과 제안한 방법이 기존 방법에 비해 약 1/4 정도로 월등한 계산량 감축을 얻을 수 있었으며, 아울러 제안한 방법들에 의해 복원된 신호대 잡음비는 6-파라미터와 8-파라미터 추정 방법에 의해 복원된 결과들 사이에 있음을 보여 준다.
Lee, Jung Hwan;Han, In Ho;Kim, Dong Hwan;Yu, Seunghan;Lee, In Sook;Song, You Seon;Joo, Seongsu;Jin, Cheng-Bin;Kim, Hakil
Journal of Korean Neurosurgical Society
/
제63권3호
/
pp.386-396
/
2020
Objective : To generate synthetic spine magnetic resonance (MR) images from spine computed tomography (CT) using generative adversarial networks (GANs), as well as to determine the similarities between synthesized and real MR images. Methods : GANs were trained to transform spine CT image slices into spine magnetic resonance T2 weighted (MRT2) axial image slices by combining adversarial loss and voxel-wise loss. Experiments were performed using 280 pairs of lumbar spine CT scans and MRT2 images. The MRT2 images were then synthesized from 15 other spine CT scans. To evaluate whether the synthetic MR images were realistic, two radiologists, two spine surgeons, and two residents blindly classified the real and synthetic MRT2 images. Two experienced radiologists then evaluated the similarities between subdivisions of the real and synthetic MRT2 images. Quantitative analysis of the synthetic MRT2 images was performed using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results : The mean overall similarity of the synthetic MRT2 images evaluated by radiologists was 80.2%. In the blind classification of the real MRT2 images, the failure rate ranged from 0% to 40%. The MAE value of each image ranged from 13.75 to 34.24 pixels (mean, 21.19 pixels), and the PSNR of each image ranged from 61.96 to 68.16 dB (mean, 64.92 dB). Conclusion : This was the first study to apply GANs to synthesize spine MR images from CT images. Despite the small dataset of 280 pairs, the synthetic MR images were relatively well implemented. Synthesis of medical images using GANs is a new paradigm of artificial intelligence application in medical imaging. We expect that synthesis of MR images from spine CT images using GANs will improve the diagnostic usefulness of CT. To better inform the clinical applications of this technique, further studies are needed involving a large dataset, a variety of pathologies, and other MR sequence of the lumbar spine.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.