• Title/Summary/Keyword: Sigma-delta modulation

Search Result 48, Processing Time 0.023 seconds

Design of LUT-Based Decimation Filter for Continuous-Time PWM ADC (연속-시간 펄스-폭-변조 ADC를 위한 LUT 기반 데시메이션 필터 설계)

  • Shim, Jae Hoon
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.461-468
    • /
    • 2019
  • A continuous-time Delta-Sigma ADC has various benefits; it does not require an explicit anti-aliasing filter, and it is able to handle wider-band signals with less power consumption in comparison with a discrete-time Delta-Sigma ADC. However, it inherently needs to sample the signal with a high-speed clock, necessitating a complex decimation filter that operates at high speed in order to convert the modulator output to a low-rate high-resolution digital signals without causing aliasing. This paper proposes a continuous-time Delta-Sigma ADC architecture that employs pulse-width modulation and shows that the proposed architecture lends itself to a simpler implementation of the decimation filter using a lookup table.

A 1 GHz Tuning range VCO with a Sigma-Delta Modulator for UWB Frequency Synthesizer (UWB 주파수 합성기용 1 GHz 광 대역 시그마 델타 성긴 튜닝형 전압 제어 발진기)

  • Nam, Chul;Park, An-Su;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.64-72
    • /
    • 2010
  • This paper presents a wide range VCO with fine coarse tuning step using a sigma-delta modulation technique for UWB frequency synthesizer. The proposed coarse tuning scheme provides the low effective frequency resolution without any degradation of phase noise performance. With three steps coarse tuning, the VCO has wide tuning range and fine tuning step simultaneously. The frequency synthesizer with VCO was implemented with 0.13 ${\mu}m$ CMOS technology. The tuning range of the VCO is 5.8 GHz~6.8 GHz with the effective frequency resolution of 3.9 kHz. It achieves the measured phase noise of -108 dBc/Hz at 1 MHz offset and a tuning range 16.8 % with 5.9 mW power. The figure-of-merit with the tuning range is -181.5 dBc/Hz.

Design of a high speed 3rd order sigma-delta modulator (3.3V 고속 CMOS 3차 시그마 델타 변조기 설계)

  • 박준한;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.982-985
    • /
    • 1999
  • An efficient technique to trade off speed for resolution is the sigma-delta modulation (SDM). This paper proposes a new SDM architecture to improve conversion rates and SNR(Signal-to Noise Ratio) by using master clock and four divided clock. The charateristics of the proposed SDM are simulated in MATLAB environment. and optimizing the capacitor sizes is done by iterative processing. other analog characteristics are simulated using 0.65${\mu}{\textrm}{m}$ n-well CMOS process, double poly and single metal. The result of simulation shows that more increasing the effective bits of internal ADC/DAC, bigger the improvement of SNR.

  • PDF

A High-Efficiency Driver Design for Mobile Digital Audio Speakers (모바일용 디지털 오디오 스피커를 위한 고효율 드라이버 설계)

  • Kim, Yong-Serk;Rim, Min-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.19-26
    • /
    • 2011
  • In this paper, we designed Interpolation FIR(Finite Impulse Response) filter and 1-bit SDM(Sigma- Delta Modulator) for small digital audio speaker, which has low power consumption and high output characteristics. In order to achieve high linearity and low distortion performance of the systems, we adopt Type I Chevychev FIR filter which has equiripple characteristics in the pass band and proposed high efficient FIR filter structure. SDM is the most efficient modulation technique among the noise shaping techniques. In this paper, we implemented SDM using CIFB(Cascade of Intergrators, Feed-Back) which is generally used in DAC of small digital audio speakers. The proposed SDM structure can achieve high SNR, high-efficiency characteristics and low power consumption in mobile devices. Also considering manufacture of SoC(System on Chip), we performed simulation with Matlab and Verilog HDL to obtain optimal number of operational bits and verified a good experimental results.

Delta Sigma Modulation of Controller Input Signal for the LED Light Driver (시그마 델타 변조에 의한 LED 드라이버의 입력 콘트롤러 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.151-155
    • /
    • 2016
  • In this paper, we present the LED dimming control system by using ADPCM (Adaptive Differential Pulse Code Modulation). This ADPCM apparatus accurately controls the LED current with high resolution reducing the RFI (radio frequency interference) due to the spreading out of the harmonics of current of pulses. Additionally, this makes it easier to increase the accuracy of control operation. This study introduces to make a digitally controlled circuit for controlling LED with high-energy efficient by adopting pulse current to LED. The LED current drive system we designed are two systems, the digitally-controlled unit and analog switching mode power supply unit, can be developed separately. The simulation shows the sigma delta modulation of digital to analog converter's output when the input level is 0.7. From this simulation, the output is approached to accurately 0.15% to target value with 510 pulses.

Design of a High-Resolution Integrating Sigma-Delta ADC for Battery Capacity Measurement (배터리 용량측정을 위한 고해상도 Integrating Sigma-Delta ADC 설계)

  • Park, Chul-Kyu;Jang, Ki-Chang;Woo, Sun-Sik;Choi, Joong-Ho
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • Recently, with mobile devices increasing, as a variety of multimedia functions are needed, battery life is decreased. Accordingly the methods for extending the battery life has been proposed. In order to implement these methods, we have to know exactly the status of the battery, so we need a high resolution analog to digital converter(ADC). In case of the existing integrating sigma-delta ADC, it have not convert reset-time conversion cycle to function of resolution. Because of this reason, all digital values corresponding to the all number of bits will not be able to be expressed. To compensated this drawback, this paper propose that all digital values corresponding to the number of bits can be expressed without having to convert reset-time additional conversion cycle to function of resolution by using a up-down counter. The proposed circuit achieves improved SNDR compared to conventional converters simulation result. Also, this was designed for low power suitable for battery management systems and fabricated in 0.35um process.

A Study on Techniques for the Reduction of SRTS Jitter and Pointer Adjustment Jitter (SRTS 지터와 포인터 조정 지터의 감소 방식에 관한 연구)

  • Choi, Seung-Kuk
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.455-462
    • /
    • 2003
  • Techniques for the reduction of SRTS jitter and pointer adjustment jitter are studied. To reduce the stuffing jitter several methods have been proposed, such as bit leaking, stuff threshold modulation and sigma delta modulation. The characteristics of jitter generated in SRTS and pointer adjustment systen implementing these reduction techniques is analyzed with computer simulation. The results show that ms jitter value decreases to less than 50% as compared to a conventional pointer adjustment system. The amplitude of SRTS jitter using new techniques decreases or Increases dependent on system parameter.

A Stereo Audio DAC with Asymmetric PWM Power Amplifier (비대칭 펄스 폭 변조 파워-앰프를 갖는 스테레오 오디오 디지털-아날로그 변환기)

  • Lee, Yong-Hee;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.44-51
    • /
    • 2008
  • A stereo audio digital-to-analog converter (DAC) with a power amplifier using asymmetric pulse-width modulation (PWM) is presented. To adopt class-D amplifier mainly used in high-power audio appliances for head-phones application, this work analyzes the noise caused by the inter-channel interference during the integration and optimizes the design of the sigma-delta modulator to decrease the performance degradation caused by the noise. The asymmetric PWM is implemented to reduce switching noise and power loss generated from the power amplifier. This proposed architecture is fabricated in 0.13-mm CMOS technology. The proposed audio DAC including the power amplifier with single-ended output achieves a dynamic range (DR) of 95-dB dissipating 4.4-mW.

The Error Diffusion Halftoning Using Local Adaptive Sharpening Control (국부 적응 샤프닝 조절을 사용한 오차확산 해프토닝)

  • 곽내정;양운모;윤태승;안재형
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.87-92
    • /
    • 2004
  • Digital halftoning is to quantize a grayscale image to binary image. The error diffusion halftoning generates high quality bilevel image. But that also has some defects such as warms effect, sharpening and etc. To reduce these defects, Kite proposed the modified threshold modulation that has a parameter to control sharpening. Nevertheless some degradation left near edges with large luminance change. In this paver, we propose a method to control the parameter in proportional to local edge magnitude. The results of computer simulation show more reductions of the sharpening in the halftone image. Especially there are great improvement of quality near edges with large luminance change.

Development of a Sensor Chip for Phasor Measurement of Multichannel Single Tone Signals (다채널 단일톤 위상 측정칩 개발)

  • Kim, Byoung-Il;Hong, Keun-Pyo;Hwang, Jin-Yong;Chang, Tae-Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.497-500
    • /
    • 2005
  • This paper presents a design of a hybrid sensor chip which integrates an A/D converter module and a phase measurement module for measuring power line phase. Recursive sliding DFT based phase measurement module is designed using time shared multiplier which can reduce the size of SoC implementation. A/D converter is based on the sigma delta modulation in order to minimize the implementation space of the analog part and designed to obtain 8-bit resolution. Computer simulations and FPGA implementation are performed to verify hybrid sensor chip design. The hybrid sensor chip for 4-channel power line phase measurement is fabricated by using 0.35 micrometer CMOS process.

  • PDF