• Title/Summary/Keyword: Side wall effect

Search Result 218, Processing Time 0.03 seconds

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

The effect of wall squat exercise according to the difference in the support surface on the muscle thickness and balance of the trunk (지지면 차이에 따른 월 스쿼트 운동이 몸통 근두께와 균형에 미치는 영향)

  • Jeong, Jin Gyu;Park, Jae Cheol
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.64-72
    • /
    • 2022
  • Background: The purpose of this study is to investigate the effect of wall squat exercise according to the difference in the support surface on the thickness change of external oblique, internal oblique and transverse abdominalis of the trunk muscles and the change in distance of center of pressure when the eyes are opened and closed. Design: Randomized controlled trial. Methods: The subjects were 26 healthy adults, 18 males and 8 females. The composition of each group using the single-blind method was 13 people in the unstable side wall squat exercise group and 13 people in the stable side wall squat exercise group. Experimental measurements were divided into before, 3 weeks, and 6 weeks after the experiment, and changes in muscle thickness and balance were confirmed. Muscle thickness was measured using ultrasinic, and static balance change was measured using Bio-rescue. Results: There were significant differences in the thickness changes of external oblique, internal oblique and transverse abdominalis according to the wall squat exercise method by period and in the interaction between the period and the group (p<0.05). As a result of the post-hoc analysis, there was a significant difference in the change between the two groups in external oblique muscle after 6 weeks. And there was a significant difference in the distance of the pressure center between eyes open and closed eyes (p<0.05). Conclusion: In terms of instability, wall squat exercise was positive for changes in trunk muscle thickness. It suggests the possibility of using it for trunk muscle strengthening training in the future.

EFFECT OF INITIAL SALT CONCENTRATION ON THE FREEZING OF BINARY MIXTURE SATURATED PACKED BED (이원혼합용액의 초기농도가 동결에 미치는 영향에 관한 실험연구)

  • 최주열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.527-534
    • /
    • 1997
  • Freezing of an aqueous sodium cWoride solution (Nacl- H20) saturating a packed bed with ini¬tial salt concentrations of 5, 10, 15(k by weight is investigated experimentally in a rectangular cav¬ity. The system was cooled from the top, bottom and a vertical side wall. For the freezing experi¬ments from below, there was little effect of the initial salt concentration throughout the freezing process, and the global freezing rate was not affected by the initial salt concentration. For the freezing from above, the size of the mush region decreased and the mushlliquid interface became flatter as the initial liquid concentration is decreased. For the freezing from vertical side wall, reheating of the mixture was intensified with an increase in the initial salt concentration. For Ci= 5%, supercooling was observed only at the early times of freezing process, but for Ci= 15% small supercooling was observed throughout the freezing process.

  • PDF

A suggestion of the SOI MOSFET device with buried island structure (매몰된 island 구조를 갖는 SOI MOSFET 소자의 제안)

  • Lee, Ho-Jun;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.806-808
    • /
    • 1992
  • This paper describes a buried-island SOI MOSFET structure which can reduce the edge channel effect by improving the interface properties at the side wall of active island and by reducing the strength of electric field applied at the upper corner of the side wall from the gate. Also, the buried-island SOl structure can obtain the uniform thickness of SOl film. The buried-island structure can be achieved by Zone- Melting-Recrystallization of polysilicon and polishing. Both simulated and experimental results show that the buried-island SOl NMOSFET has less edge channel effect than the conventional SOl NMOSFET using LOCOS or mesa isolation technique.

  • PDF

The Analysis of Inground LNG Storage Tank Compression Ring Behavior during Concrete Pouring (콘크리트 타설에 따른 지하식 LNG 저장탱크 컴프레션 링 거동 분석)

  • Kim Y.K.;Kim J.H.;Yoon I.S.;Oh B.T.;Yang Y.M.
    • 한국가스학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.82-87
    • /
    • 2004
  • Compression ring is a part of LNG storage tank. The main function of the compression ring is connected the roof plate with concrete side wall. End of its one side is embedded in the side concrete wall and the other's connected with the roof plate by welding. It is designed to support stably for all the loads such as self weight of steel roof, inner pressure and concrete weight. We fulfill the FEM analysis to analysis the compression ring behavior during construction. Also we studied the effect of the change of design variables. On the basis of the results, we could introduce a more reasonable design method for compression ring.

  • PDF

A Study on Reaction Stability Between Nickel and Side-wall Materials With Silicidation Temperature (니켈실리사이드 제조온도에 따른 측벽물질과의 반응안정성 연구)

  • An, Yeong-Suk;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.71-75
    • /
    • 2001
  • The reaction stability of nickel with side-wall materials of SiO$_2$ and Si$_3$N$_4$ on p-type 4"(100) Si substrate were investigated. Ni on 1300 $\AA$ thick SiO$_2$ and 500 $\AA$ - thick Si$_3$N$_4$ were deposited. Then the samples were annealed at 400, 500, 750 and 100$0^{\circ}C$ for 30min, and the residual Ni layer was removed by a wet process. The interface reaction stability was probed by AES depth Profiling. No reaction was observed at the Ni/SiO$_2$ and Ni/Si$_3$N$_4$, interfaces at 400 and 50$0^{\circ}C$. At 75$0^{\circ}C$, no reaction occurred at Ni/SiO$_2$ interface, while $NiO_x$ and Si$_3$N$_4$ interdiffused at Ni/Si$_3$N$_4$ interface. At 100$0^{\circ}C$, Ni layers on SiO$_2$ and Si$_3$N$_4$ oxidized into $NiO_x$ and then $NiO_x$ interacted with side-wall materials. Once $NiO_x$ was formed, it was not removed in wet etching process and easily diffused into sidewall materials, which could lead to bridge effect of gate-source/drain.

  • PDF

Effect of Wall Thickness on Thermal Behaviors of RC Walls Under Fire Conditions

  • Kang, Jiyeon;Yoon, Hyunah;Kim, Woosuk;Kodur, Venkatesh;Shin, Yeongsoo;Kim, Heesun
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.19-31
    • /
    • 2016
  • The objective of this paper is to investigate the effect of thickness and moisture on temperature distributions of reinforced concrete walls under fire conditions. Toward this goal, the first three wall specimens having different thicknesses are heated for 2 h according to ISO standard heating curve and the temperature distribution through the wall thickness is measured. Since the thermal behavior of the tested walls is influenced by thickness, as well as moisture content, three additional walls are prepared and preheated to reduce moisture content and then tested under fire exposure. The experimental results clearly show the temperatures measured close to the fire exposed surface of the thickest wall with 250 mm thickness is the highest in the temperatures measured at the same location of the thinner wall with 150 mm thickness because of the moisture clog that is formed inside the wall with 250 mm of thickness. This prevents heat being transferred to the opposite side of the heated surface. This is also confirmed by the thermal behavior of the preheated walls, showing that the temperature is well distributed in the preheated walls as compared to that in non-preheated walls. Finite element models including moisture clog zone are generated to simulate fire tests with consideration of moisture clog effect. The temperature distributions of the models predicted from the transient heat analyses are compared with experimental results and show good agreements. In addition, parametric studies are performed with various moisture contents in order to investigate effect of moisture contents on the thermal behaviors of the concrete walls.

Changes in Cell Wall Components and Cell Wall-degrading enzymes during Softening of Fruits (과실의 연화중에 세포벽 성분과 세포벽분해효소의 변화)

  • 신승렬;김광수
    • Food Science and Preservation
    • /
    • v.3 no.1
    • /
    • pp.93-104
    • /
    • 1996
  • The cell wall components of fruit include cellulose. hemicellulose, pectin, glycoprotein etc., and the cell wall composition differs according to the kind of fruit. Fruit softening occurs as a result of a change in the cell wall polysaccharides : the middle lamella which links primary cell walls is composed of pectin. and primary cell walls are decomposed by a solution of middle lamella caused due to a result of pectin degradation by pectin degrading enzymes during ripening and softening, During fruit ripening and softening, contents of arabinose and galactose among non-cellulosic neutral sugars are notably decreased, and this occurs as a result of the degradation of pectin during fruit repening and softening since they are side-chained with pectin in the form of arabinogalactan and galactan Enzymes involved in the degradation of the cell wall include polygalacturonase, cellulose, pectinmethylesterase, glycosidase, etc., and various studies have been done on the change in enzyme activities during the ripening and softning of fruit. Among cell wall-degrading enzymes, polygalacturonase has the greatest effect on fruit softening, and its activity Increases during the maturating and softening of fruit. This softening leads to the textural change of fruit as a result of the degradation of cell wall polysaccharides by a cell wall degrading enzyme which exists in fruit.

  • PDF

Experimental discussion on the installation of filler wall for sound insulation measurements of shipboard windows (선박용 창의 차음성능 측정용 충진벽체 설치에 관한 실험적 고찰)

  • Kim, Sang-Ryul;Kang, Hyun-Ju;Kim, Hyun-Sil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.276-279
    • /
    • 2008
  • In order to measure sound transmission loss (STL) of a shipboard window of small size, a special partition is built into the test opening between two reverberation rooms and the specimen is placed in that partition. For high sound insulation, the filler wall often has multi-layered structure such as double-brick wall or buckhead structure with thick steel plate, absorptive material, and sandwich panels. This paper discusses the installation method of a multi-layered filler wall that consist of gypsum boards, lead plates, and glass wool. The experimental results of various wall structures are introduced. The comparison between the results show that the sound bridge effect plays a significant role in lowering the maximum STL of the filler wall. It is also found that the higher the sound insulation performance of the filler wall is, the more important the franking transmission through other side wall of the test facility is.

  • PDF

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.