• Title/Summary/Keyword: Side crash test

Search Result 57, Processing Time 0.029 seconds

A Study on the Evaluation of Front Side Member in Tailored Blank Manufacturing Process (프런트 사이드 멤버의 테일러드 블랭크 제조방식에 따른 성능 평가에 관한 연구)

  • Choi Y. C.;Choi C. S.;Oh Y. K.;Kwon S. Y.;Sin C. S.;Rha D. H.;Rho S. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.143-148
    • /
    • 2000
  • This paper describes how to make tailored blanks of front side member that were composed of high strength steel and TRIP(TRansformation Induced Plasticity) steel for weight reduction and improvement of crash load. Tailored blanks made by laser and mash-seam welding were compared with non-tailored blanks made by spot welding. Static compression tests were performed for performance comparison of each sample. Front side members made by tailored blank were superior to those made by spot welding in the initial, but those results were inverse in the last. Average load of tailored blank in six-angle type was better than that of rectangular type.

  • PDF

A Study on the Evaluation of Front Side Member in Tailored Blank Manufacturing Process (프런트 사이드 멤버의 테일러드 블랭크 제조방식에 따른 성능 평가에 관한 연구)

  • Choi, Y.C.;Choi, C.S.;Oh, Y.K.;Kwon, S.Y.;Sin, C.S.;Rha, D.H.;Rho, S.K.
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.200-205
    • /
    • 2001
  • This paper describes how to make tailored blanks of front side member that were composed of high strength steel and TRIP(TRansformation Induced Plasticity) steel for weight reduction and improvement of crash load. Tailored blanks made by laser and mash-seam welding were compared with non-tailored blanks made by spot welding. Static compression tests were performed for performance comparison of each sample. Front side members made by tailored blank were superior to those made by spot welding in the initial, but those results were inverse in the last. Average load of tailored blank in six-angle type was better than that of rectangular type.

  • PDF

Study on Improvement Method and Performance Analysis About Occupied Existing Roadside Barriers in Expressway (고속도로에서 공용중인 노측용 차량방호울타리의 성능분석 및 개선방안에 관한 연구)

  • Joo, Jae-Woong;Jang, Dae-Young;Ha, Jong-Moon;Park, Je-Jin
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 2011
  • It is possible to set up the Roadside Barrier which is suitable for Performance Evaluation Criteria by domestic standard. But a number of section of expressway roadside have old guardrail that was installed before reform the guideline. These poor performance guardrails threaten driver's life. There is lots of difficult problem to change old guardrails that are installed 2,777km in expressway of whole road side at the same time. Especially budget problem. The purpose of study is to develop performance improvement guardrails by the minimum reinforcement. In this study, guardrail improvement method(SB1, 3, 5 grade) is developed through crash simulation using LS-DYNA 3D and vehicle crash test. And it's expected not only to decrease of collision accident but to increase safe level. Of course one thing that can't be missing is to reduce a lot of budget of guardrail change.

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

Development of High Strength Steel Body by Hot Stamping (핫스탬핑에 의한 고강도 차체 부품 개발)

  • Lee, D.H.;Kim, T.J.;Lim, J.D.;Lim, H.J.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2009
  • Quenchable boron steel is a new type of high strength steel to reduce the weight of automobiles and maintain the safety conditions. Quenchable blanks can be hot-stamped and hardened in a water-cooled tool to achieve high strength. In this paper, new alloy for hot stamping is designed based on requirement of mechanical properties and two types of surface coating are investigated in viewpoints of oxidization and exfoliation. An automotive part of center pillar is manufactured by hot-stamping using Al-Si coated sheet. The performance of developed part is compared by static compression test and side impact crash test.

The Study on Effect of Collision Safety by Corrosion of Body Structure (차체구조물의 부식이 충돌안전도에 미치는 영향에 관한 연구)

  • 박인송;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.141-148
    • /
    • 2002
  • Repair were made for front pillar, center pillar and side-step panel for lightweight vehicles with head-on and 40% off-set collision of 15 km/h in a RCAR standard. The salt dilution was sprayed and the compression tests were performed for vehicles with and without anti-corrosional treatment after repair. After 764 hours of salt-dilt sprayed test without using anti-corrosion, the mean penetration depth fur corrosion was shown to be 58% of the thickness. The resulyed decrease in bending stiffness by 10∼20% can cause reduction of the residual life and crash-absorption capability for damaged vehicles. The corrosoin safety tests showed that the anti-corrosional treatment should be made to improve the safety characteristics for a or damaged car.

The Evaluation of Reliability for the High pressure hydrogen Storage System of Fuel Cell Vehicle(II) (연료전지자동차의 고압수소저장시스템 신뢰성 평가(II))

  • Choi, Young-Min;Kim, Sang-Hyun;Kim, Hyung-Ki;Jang, Gyu-Jin;Ahn, Byung-Ki;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.37-40
    • /
    • 2008
  • We have concentrated on the performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle so far. But for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module. We built the standard to evaluate and collision safety of high pressure storage system for fuel cell vehicle, and could verify reliability of high pressure storage system.

  • PDF

On Study the Safety Assessment of Accident Electric Multiple Units (전동차 구조체의 안전성 평가 연구)

  • 정종덕;김정국;편장식;김원경;홍용기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1105-1108
    • /
    • 2004
  • This paper describes the structural analysis result and load test result of accident EMU(Electric Multiple Units). Structural analysis and load test of EMU were performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The purpose of the load test is to evaluate a safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. The results have been used to provide the critical information for the criteria of safety assessment.

  • PDF

Development for Shock Absorption System by Using FE Analysis (FE 해석을 통한 충격흡수시설의 개발)

  • Kang, Y.H.;Kim, H.J.;Park, D.H.;Kim, K.S.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.224-229
    • /
    • 2000
  • This paper describe a (mite element computer simulation of a absorption system using full scale car crash test. The full scale test selected for this study is a 80kmh frontal, side and 25% offset impact of a 1993 Ford Taurus vehicle into a absorption system. This absorption system has external rubber and internal steel pannel. This simulation has completed for decision of these components energy absorption performance. Dynamical performance of this system and movement are obtained from this simulation. and then We can appreciate the safety of passenger from measure the vehicle C.G's acceleration.

  • PDF

OPTIMIZATION OF A DRIVER-SIDE AIRBAG USING KRIGING AND TABU SEARCH METHODS (크리깅과 타부탐색법을 이용한 운전석 에어백의 최적설계)

  • Kim, Jeung-Hwan;Lee, Kwom-Hee;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1035-1040
    • /
    • 2004
  • In the proto design stage of a new car, the performance of an occupant protection system is often evaluated by CAE instead of the real test. CAE predicts and recommends the appropriate design values hence reducing the number of the real tests. However, the existing researches using CAE in predicting the performances do not consider the uncertainties of parameters, in which inconsistency between the actual test results and CAE exists. In this research, the optimization procedure of a protection system such as airbag and load limiter is suggested for the frontal collision. The DACE modeling known as Kriging interpolation is introduced to obtain the meta model of the system followed by the tabu search method to determine a global optimum. Finally, the distribution of a suggested design is determined through the Monte-Carlo Simulation.

  • PDF