• Title/Summary/Keyword: Siberian ginseng

Search Result 28, Processing Time 0.04 seconds

Inhibition of mTOR signaling pathway by aqueous extract of Siberian ginseng

  • Byun, Boo Hyeong;Cho, Tae Hwan;Park, Kyeong Mee
    • The Journal of Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.7-14
    • /
    • 2017
  • Objectives: This study evaluated the effect of aqueous extract from roots of Siberian ginseng on mTORC1 pathway. Methods: mTORC1 activity was measured by the phosphorylation status of p70 S6 kinase (S6K) in HeLa cells as well as the brain, liver and muscle tissues in diabetic db/db mice. Autophagy induction after the treatment of Siberian ginseng extract was evaluated by monitoring the conversion of cytoplasmic LC3I into lipidated LC3II in cultured human HeLa GFP-LC3 cells. Cell cycle analysis was performed in HeLa cells treated with Siberian ginseng using flow cytometry. Results: Among >2,800 plant products used for oriental medicine, Siberian ginseng was found to inhibit mTORC1 to phosphorylate S6 kinsase (S6K) in HeLa cells as well as the brain, liver and muscle tissues in diabetic db/db mice. Siberian ginseng-mediated mTORC1 activity was reversible unlike the prolonged suppression of mTORC1 by rapamycin when HeLa cells were grown in fresh media after the removal of the inhibitors. Siberian ginseng extract at concentrations to inhibit mTORC1 was not overly cytotoxic in cultured HeLa cells whereas rapamycin was obviously cytotoxic. The conversion of cytoplasmic LCI into lipidated LCII was increased by fivefold in HeLa GFP-LC3 cells treated with Siberian ginseng extract. Progression of cell cycle was attenuated at G2/M phase by the treatment of Siberian ginseng extract. Conclusions: These results suggest that the aqueous extract of Siberian ginseng possibly plays a good therapeutic role in various diseases involving mTORC1 signaling.

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Proliferative and Inhibitory Activity of Siberian ginseng (Eleutherococcus senticosus) Extract on Cancer Cell Lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b

  • Cichello, Simon Angelo;Yao, Qian;Dowell, Ashley;Leury, Brian;He, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4781-4786
    • /
    • 2015
  • Siberian ginseng (Eleutherococcus senticosus) is used primarily as an adaptogen herb and also for its immune stimulant properties in Western herbal medicine. Another closely related species used in East Asian medicine systems i.e. Kampo, TCM (Manchuria, Korea, Japan and Ainu of Hokkaido) and also called Siberian ginseng (Acanthopanax senticosus) also displays immune-stimulant and anti-cancer properties. These may affect tumour growth and also provide an anti-fatigue effect for cancer patients, in particular for those suffering from lung cancer. There is some evidence that a carbohydrate in Siberian ginseng may possess not only immune stimulatory but also anti-tumour effects and also display other various anti-cancer properties. Our study aimed to determine the inhibitory and also proliferative effects of a methanol plant extract of Siberan ginseng (E. senticosus) on various cancer and normal cell lines including: A-549 (small cell lung cancer), XWLC-05 (Yunnan lung cancer cell line), CNE (human nasopharyngeal carcinoma cell line), HCT-116 (human colon cancer) and Beas-2b (human lung epithelial). These cell lines were treated with an extract from E. senticosus that was evaporated and reconstituted in DMSO. Treatment of A-549 (small cell lung cancer) cells with E. senticosus methanolic extract showed a concentration-dependent inhibitory trend from $12.5-50{\mu}g/mL$, and then a plateau, whereas at 12.5 and $25{\mu}g/mL$, there is a slight growth suppression in QBC-939 cells, but then a steady suppression from 50, 100 and $200{\mu}g/mL$. Further, in XWLC-05 (Yunnan lung cancer cell line), E. senticosus methanolic extract displayed an inhibitory effect which plateaued with increasing dosage. Next, in CNE (human nasopharyngeal carcinoma cell line) there was a dose dependent proliferative response, whereas in Beas-2 (human lung epithelial cell line), an inhibitory effect. Finally in colon cancer cell line (HCT-116) we observed an initially weak inhibitory effect and then plateau.

Effect of Dietary Siberian Ginseng and Eucommia on Broiler Performance, Serum Biochemical Profiles and Telomere Length (가시오갈피와 두충의 첨가 급여가 브로일러의 생산 능력, 혈장 생화학 지표 및 텔로미어 함량에 미치는 영향)

  • Sohn, S.H.;Jang, I.S.;Moon, Y.S.;Kim, Y.J.;Lee, S.H.;Ko, Y.H.;Kang, S.Y.;Kang, H.K.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • The Siberian ginseng and Eucommia are a kind of medicinal plant with powerful anti-oxidant activity. An experiment was conducted to investigate the effect of Siberian ginseng leaf and Eucommia leaf at level of 0.5% and 1% per feed in Ross commercial broiler for 4 to 35 days of age on performance, organ weight, blood biochemical profiles and telomere quantity. Chickens consuming diets containing 1% Siberian ginseng had higher feed conversion ratio than the other treated chicken during experimental period whereas no significant differences were detected in body weight, weight gain and feed intake. The weight of bursa of fabricius was significantly increased in chickens with dietary supplementation compared with chickens fed control but this was not seen in liver, spleen and thymus. In blood biochemical profiles, chickens with dietary supplementation had higher concentration than chickens fed control in triglyceride, cholesterol and glucose. The concentration of aspartate aminotransferase, alanine aminotransferase, albumin and total protein, however, was not significantly different between dietary supplemented chickens and control chickens. The relative amount of telomeric DNA of lymphocytes in chickens with dietary supplementation was significantly higher than that of control chickens but the difference was not found in liver, heart and testis tissues. In conclusion, dietary supplementation of Siberian ginseng and Eucommia in broiler improved immune activity and telomere length without decreasing chicken growth performance.

Transgenic Siberian Ginseng Cultured Cells That Produce High Levels of Human Lactoferrin (인체 락토페린 생산 형질전환 가시오갈피 배양세포)

  • Jo Seung-Hyun;Kwon Suk-Yoon;Kim Jae-Whune;Lee Ki-Teak;Kwak Sang-Soo;Lee Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Lactoferrin is an iron-binding glycoprotein with many biological roles, including the protection against microbial and virus infection, stimulation of the immune system. We developed the transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing the human lactoferrin (hLf) protein following Agrobacterium tumefaciens-mediated transformation. A construct containing a targeting signal peptide from tobacco endoplasmic reticulum fused to hLf cDNA under the control of an oxidative stress-inducible SWPA2 promoter was engineered. Transgenic Siberian ginseng cultured cells to produce a recombinant hLf protein were successfully generated and confirmed by PCR and Southern blot analysis. ELISA and western blot analysis showed that full length-hLf protein was synthesized in the transgenic cells. The production of hLf increased proportionally to cell growth and reached a maximal (up to 3% of total soluble proteins) at the stationary phase. These results suggest that the transgenic Siberian ginseng cultured cells in this study will be biotechnologically useful for the commercial production of medicinal plant cell cultures to produce hLf protein.

A Role for Ginseng in the Control of Postprandial Glycemia and Type 2 Diabetes

  • Vuksan Vladimir;Sievenpiper John L;Xu Zheng;Zdravkovic Uljana Beljan;Jenkins Alexandra L;Arnason John T;Bateman Ryon M.;Leiter Lawrence A;Josse Robert G;Francis Thomas;Stavro Mark P
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.1-19
    • /
    • 2002
  • The use of herbals has increased considerably while their efficacy and safety remain untested. This unsupported surge in demand has prompted a call for their clinical evaluation. One area in which evaluations are emerging is ginseng and diabetes. Growing evidence is accumulating from in vitro and animal models indicating that various ginseng species, American (Panax quinquefolius L), Asian (Panax ginseng C.A. Meyer), Korean Red, San-chi (Panax notoginseng [Burk.] P.R. Chen), and the non-panax species Siberian (Eleutherococcus senticossus) ginsing, and their fractions, saponins (ginsenosides) and peptidoglycans (panaxans for panax species and eleutehrans for Siberian ginseng), might affect carbohydrate metabolism and related signaling molecules. Recent human studies from our laboratory have also shown a blood glucose lowering effect of American ginseng (AG) and some other ginseng spices postprandially after acute administration and chronically after administration for 8-weeks in people with type 2 diabetes. Although generally encouraging, these data only indicate a need for more evaluations of ginsengs safety and efficacy. Because of poor industry standardization, it is not known whether all ginsengs will affect blood glucose. In this regards some ginseng batches have demonstrated null effects while others have even raised postprandial glycemia. Clinical research should therefore focus on components involved in its glucose lowering effects.

  • PDF