• Title/Summary/Keyword: SiOF Thin Film

Search Result 2,903, Processing Time 0.031 seconds

Effect of RF Sputtering Conditions on Properties of Thin Film Resistor for Microwave Device (초고주파용 박막저항의 특성에 미치는 RF 스파터링 조건의 영향)

  • Ryu, Sung-Rok;Koo, Bon-Keup;Kang, Beong-Don;Ryu, Jei-Chun;Kim, Dong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.913-917
    • /
    • 2003
  • In the electronic components and devices fabrication, thin film resistors with low TCR(temperature coefficient of resistance) and high precision have been used over 3 GHz microwave in recent years. Ni-Cr alloys thin films resistors is one of the most commonly used resistive materials because it has low TCR and highly stable resistance. In this work, we fabricated thin film resistors using Evanohm alloys target(72Ni-20Cr-3Al-4Mn-Si) of s-type with excellent resistors properties by RF-sputtering. Also we reported best deposited conditions of thin film resistors for microwave to observe microstructure and electronic properties of thin film according to deposited conditions(between target and substrate, power supply)

  • PDF

Ultralow Dielectric Properties of $SiO_2$ Aerogel Thin Films (실리카 에어로겔 박막의 극저 유전특성)

  • 현상훈;김중정;김동준;조문호;박형호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.314-322
    • /
    • 1997
  • The thin film processing and the applicability as a IMD material of SiO2 aerogels providing ultralow dielec-tric properties were studied. The SiO2 aerogel films with 0.5g/㎤ density (78% porosity) and 4000~21000$\AA$ thickness could be prepared at 25$0^{\circ}C$ and 1160 psig by supercritical drying of wet-gel films, which were spin-coated at the spin rate of 1000~7000 rpm on p-Si(111) wafer under the isopropanol atmosphere. The optimum viscosity of polymeric SiO2 sols for spin coating was in the range of 10~14 cP. The main fac-tors being able to control the film thickness and microstructures were found to be sol concentration, spin rpm, and aging time of wet-gel films. The dielectric constant of the SiO2 aerogel thin film was around 2.0 low enough to be applied to the next generation semiconductor device beyond the giga level.

  • PDF

Thermal Stability of the Interface between TaN Deposited by MOCVD and Electroless-plated Cu Film (MOCVD 방법으로 증착된 TaN와 무전해도금된 Cu박막 계면의 열적 안정성 연구)

  • 이은주;황응림;오재응;김정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1091-1098
    • /
    • 1998
  • Thermal stability of the electroless deposited Cu thin film was investigated. Cu/TaN/Si multilayer was fabricated by electroless-depositing Cu thin layer on TaN diffusion barrier layer which was deposited by MOCVD on the Si substrate, and was annealed in $H_2$ ambient to investigate the microstructure of Cu film with a post heat-treatment. Cu thin film with good adhesion was successfully deposited on the surface of the TaN film by electroless deposition with a proper activation treatment and solution control. Microstructural property of the electroless-deposited Cu layer was improved by a post-annealing in the reduced atmosphere of $H_2$ gas up to $600^{\circ}C$. Thermal stability of Cu/TaN/Si system was maintained up to $600^{\circ}C$ annealing temperature, but the intermediate compounds of Cu-Si were formed above $650^{\circ}C$ because Cu element passed through the TaN layer. On the other hand, thermal stability of the Cu/TaN/Si system in Ar ambient was maintained below $550^{\circ}C$ annealing temperature due to the minimal impurity of $O_2$ in Ar gas.

  • PDF

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • Park, W.H.;Kim, Y.J.;Keum, M.J.;Ka, C.H.;Son, I.H.;Choi, H.W.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta\theta_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 200Oe. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.

  • PDF

Effects of thermal annealing of AlN thin films deposited on polycrystalline 3C-SiC buffer layer (다결정 3C-SiC 버퍼층위 증착된 AlN 박막의 열처리 효과)

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • In this study, the effect of a long post-deposition thermal annealing(600 and 1000 $^{\circ}C$) on the surface acoustic wave (SAW) properties of polycrystalline (poly) aluminum-nitride (AlN) thin films grown on a 3C-SiC buffer layer was investigates. The poly-AlN thin films with a (0002) preferred orientation were deposited on the substrates by using a pulsed reactive magnetron sputtering system. Experimental results show that the texture degree of AlN thin film was reduced along the increase in annealing temperature, which caused the decrease in the electromechanical coupling coefficient ($k^2$). The SAW velocity also was decreased slightly by the increase in root mean square (RMS) roughness over annealing temperature. However, the residual stress in films almost was not affect by thermal annealing process due to small lattice mismatch different and similar coefficient temperature expansion (CTE) between AlN and 3C-SiC. After the AlN film annealed at 1000 $^{\circ}C$, the insertion loss of an $IDT/AlN/3C-SiC/SiO_2/Si$ structure (-16.44 dB) was reduced by 8.79 dB in comparison with that of the as-deposited film (-25.23 dB). The improvement in the insertion loss of the film was fined according to the decrease in the grain size. The characteristics of AlN thin films were also evaluated using Fourier transform-infrared spectroscopy (FT-IR) spectra and X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images.

  • PDF

Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics (유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구)

  • Kim, Junmo;An, Myungchan;Jang, Youngchan;Bae, Hyeong Woo;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime

The effect of annealing temperature and Ta layer on the electric conductivity of Au thin film deposited by the magnetron sputtering (마그네트론 스퍼터링법으로 증착한 Au 박막의 전기전도특성에 미치는 열처리 온도와 Ta 삽입층의 영향)

  • Choi, Hyeok-Cheol;You, Chun-Yeol
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.433-438
    • /
    • 2007
  • We fabricated thin films of Au and Ta/Au with thicknesses of 30 nm and 5 nm/30nm, respectively on Si(100) or Si(111) substrates using a dc magnetron sputtering system. Grain sizes, roughness and conductivity for Au thin films are measured as a function of the annealing temperatures. We observed that the grain size of samples enlarged and the surface became rougher with increasing annealing temperature. The grain size and roughness were improved in the structure of Si/Ta/Au than Si/Au. Furthermore, the Si(100) substrate was more effective for decreasing the resistance for Ta/Au system than Si(111) substrate. We confirm that by inserting a Ta buffer layer in Si(100)/Au, surface roughness was reduced and by adjusting the annealing temperature the grain size were enlarged. Consequently, the Au thin-film has improved conductivity.

The Properties of ZnS:Mn AC TFEL Device with $BaTiO_3$/$Si_3$$N_4$ Insulating Thin Film ($BaTiO_3$/$Si_3$$N_4$ 이중절연막 구조의 교류구동형 ZnS:Mn 박막 EL 표시 조자의 특성)

  • 송만호;윤기현;이윤희;한택상;오명환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.121-127
    • /
    • 1994
  • The capability for application of rf magnetron sputterred and post annealed BaTiO$_{3}$ thin films in dielectrics AC drived TFELD(thin film electroluminescent device) was investigated. The dielectric constant of the thin films slightly increased up to about 25 with increase fothe post annealing temperature in the range of 210$^{\circ}C$-480$^{\circ}C$. The dielectric loss was about 0.005-0.01 except for the high frequency range above 100kHz and nearly independent on post annealing temperature. The BaTiO$_{3}$ thin film used for TFELD was annealed at 480.deg. C and Si$_{3}$N$_{4}$ thin film was inserted between BaTiO$_{3}$, lower dielecrics and ZnS:Mn, phosphor layer for stable driving of the device and for fear of interdiffusion. Regardless of the frequency of the applied sine wave voltage, the threshold voltage of the prepared TFELD was 65volt and saturated brightness was about 3000cd/m$^{2}$ at 130volt(2kHz sine wave), 65volt above V$_{TH}$.

  • PDF

Chemical Structure Analysis on the ONO Superthin Film by Second Derivative AES Spectra (2차 미분 AES 스펙트럼에 의한 ONO 초박막의 화학구조 분석)

  • 이상은;윤성필;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.79-82
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS(metal-oxide-nitride-oxide-semiconductor) EEPRM was investigated by AES and AFM. Second derivative spectra of AES Si LVV overlapping peak provided useful information for chemical state analysis of superthin film. The ONO films with dimension of tunneling oxide 24${\AA}$, nitride 33${\AA}$, and blocking oxide 40${\AA}$ were fabricated. During deposition of the LPCVD nitride films on tunneling oxide, this thin oxide was nitrized. When the blocking oxide were deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of SiO$_2$(blocking oxide)/O-rich SiON(interface/N-rich SiON(nitride)/-rich SiON(interface)/N-rich SiON(nitride)/O-rich SiON(tunneling oxide).

  • PDF

Plasma-Enhanced Atomic-Layer-Deposited SiO2 and SiON Thin Films at Low Temperature (< 300℃) using ICP Type Remote Plasma for 3-Dimensional Electronic Devices (3차원 소자 제작을 위한 ICP Type Remote PEALD를 이용한 저온(< 300℃) SiO2 및 SiON 박막 공정)

  • Kim, Dae Hyun;Park, Tea Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.98-102
    • /
    • 2019
  • Direct plasma-enhanced atomic layer deposition (PEALD) are widely used for $SiO_2$ and SiON thin film process in current semiconductor industry. However, this exhibits poor step coverage for three-dimensional device structure due directionality of plasma species as well as plasma damage on the substrate. In this study, to overcome this issue, low temperature (< $300^{\circ}C$) $SiO_2$ and SiON thin film processes were studied using inductively coupled plasma (ICP) type remote PEALD with various reactant gases such as $O_2$, $H_2O$, $N_2$ and $NH_3$. It was confirmed that the interfacial properties such as fixed charge density and charge trapping behavior of thin films were considerably improved by hydrogen species in $H_2O$ and $NH_3$ plasma compared to the films grown with $O_2$ and $N_2$ plasma. Furthermore, the leakage current density of the thin films was suppressed for same reason.