• Title/Summary/Keyword: SiH+

Search Result 5,600, Processing Time 0.041 seconds

Refractive Index Control of Silicon Oxynitride Thick Films on Core Layer of Silica Optical Waveguide (실리카 광도파로의 Core층인 Silicon Oxynitride후박의 굴절률 제어)

  • 김용탁;조성민;윤석규;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.594-597
    • /
    • 2002
  • Silicon Oxynitride(SiON) thick films on p-type silicon(100) wafers have obtained by using plasma-enhanced chemical vapor deposition from SiH$_4$ , N$_2$O and N$_2$. Prism coupler measurements show that the refractive indices of SiON layers range from 1.4620 to 1.5312. A high deposition power of 180 W leads to deposition rates of up to 5.92${\mu}$m/h. The influence of the deposition condition on the chemical composition was investigated using X-ray photoelectron spectroscopy. After deposition of the SiON thick films, the films were annealed at 1050$^{\circ}C$ in a nitrogen atmosphere for 2 h to remove absorption band near 1.5${\mu}$m.

A Global Simulation of SiH4/H2 Discharge in a Planar-type Inductively Coupled Plasma Source (평판형 유도결합 플라즈마 장치의 SiH4/H2 방전에 대한 공간 평균 전산모사)

  • Lee, Won-Gi;Kwon, Deuk-Chul;Yoon, Nam-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.426-434
    • /
    • 2009
  • A global simulation of $SiH_4/H_2$ discharge is conducted in a planar-type inductively coupled plasma (ICP) discharge. We numerically solve a set of spatially averaged fluid equations for electrons, positive ions, negative ions, neutrals, and radicals. Absorbed power by electrons is determined by an analytic electron heating theory including the anomalous skin effect. Also, we investigate functional dependence of various discharge quantities such as the densities of various species and the temperature of electron on external controllable parameters such as ratio between $SiH_4$ and $H_2$, power and pressure.

The Dependence of Mechanical Strain on a-Si:H TFTs and Metal Connection Fabricated on Flexible Substrate

  • Lee, M.H.;Ho, K.Y.;Chen, P.C.;Cheng, C.C;Yeh, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.439-442
    • /
    • 2006
  • We evaluated a-Si:H TFTs fabricated on polyimide substrate (PI) at the highest temperature of $160^{\circ}C$ with uniaxial and tensile strain to imitate flexible display. With tensile strain, the threshold voltage of a-Si:H TFTs have positive shift due to extra dangling bond formation in a-Si:H layer. However, no significant degradation of the subthreshold swing and effective mobility with tensile strain of a-Si:H TFTs indicates the similar level of band tail state. The metal wire with the width of $10\;{\mu}m$ for connection on flexible substrate can sustain with curvature radius 2.5 cm.

  • PDF

Selective Epitaxial Growth of Si and SiGe using Si-Ge-H-Cl System for Self-Aligned HBT Applications (Si-Ge-H-Cl 계를 이용한 자기정렬 HBT용 Si 및 SiGe의 선택적 에피성장)

  • 김상훈;박찬우;이승윤;심규환;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.573-578
    • /
    • 2003
  • Low temperature selective epitaxial growth of Si and SiGe has been obtained using an industrial single wafer chemical vapor deposition module operating at reduced pressure. Epitaxial Si and heteroepitaxial SiGe deposition with Ge content about 20 % has been studied as extrinsic base for self-aligned heterojunction bipolar transistors(HBTs), which helps to reduce the parasitic resistance to obtain higher maximum oscillation frequencies(f$\_$max/). The dependence of Si and SiGe deposition rates on exposed windows and their evolution with the addition of HCl to the gas mixture are investigated. SiH$_2$Cl$_2$ was used as the source of Si SEG(Selective Epitaxial Growth) and GeH$_4$ was added to grow SiGe SEG. The addition of HCl into the gas mixture allows increasing an incubation time even low growth temperature of 675∼725$^{\circ}C$. In addition, the selectivity is enhanced for the SiGe alloy and it was proposed that the incubation time for the polycrystalline deposit on the oxide is increased probably due to GeO formation. On the other hand, when only SiGe SEG(Selective Epitaxial Growth) layer is used for extrinsic base, it shows a higher sheet resistance with Ti-silicide because of Ge segregation to the interface, but in case of Si or Si/SiGe SEG layer, the sheet resistance is decreased up to 70 %.

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.

Local oxidation of 4H-SiC using an atomic force microscopy (Atomic Force Microscopy을 이용한 4H-SiC의 Local Oxidation)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.79-80
    • /
    • 2009
  • The local oxidation using an atomic force microscopy (AFM) is useful for Si-base fabrication of nanoscale structures and devices. SiC is a wide band-gap material that has advantages such as high-power, high-temperature and high-frequency in applications, and among several SiC poly types, 4H-SiC is the most attractive poly type due to the high electron mobility. However, the AFM local oxidation of 4H-SiC for fabrication is still difficult, mainly due to the physical hardness and chemical inactivity of SiC. In this paper, we investigated the local oxidation of 4H-SiC surface using an AFM. We fabricated oxide patterns using a contact mode AFM with a Pt/Ir-coated Si tip (N-type, $0.01{\sim}0.025\;{\Omega}cm$) at room temperature, and the relative humidity ranged from 40 to 50%. The height of the fabricated oxide pattern ($1{\sim}3\;nm$) on SiC is similar to that of typically obtained on Si ($10^{15}{\sim}10^{17}\;cm^{-3}$). We perform the 2-D simulation to further analyze the electric field between the tip and the surface. Whereas the simulated electric field on Si surface is constant ($5\;{\times}\;10^7\;V/m$), the electric field on SiC surface increases with increasing the doping concentration from ${\sim}10^{15}$ to ${\sim}10^{17}\;cm^{-3}$. We demonstrated that a specific electric field ($4\;{\times}\;10^7\;V/m$) and a doping concentration (${\sim}10^{17}\;cm^{-3}$) is sufficient to switch on/off the growth of the local oxide on SiC.

  • PDF

Separation of $H_2$/$N_2$ Gas Mixture by SiO$_2$-B$_2$O$_3$ Membrane (SiO$_2$-B$_2$O$_3$ 막에 의한 수소/질소 혼합기체 분리)

  • Kang Tae-Bum;Park Jin-Ho
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.312-319
    • /
    • 2004
  • The porous SiO$_2$-B$_2$O$_3$ membrane was prepared from Si(OC$_2$$H_5$)$_4$-($CH_3$O)$_3$B-C$_2$$H_5$OH-$H_2O$ system by sol-gel method. In order to investigate the characteristics of this membrane, we examined that using BET, IR spectrophotometer, X-ray diffractometer, SEM and TEM. At $700^{\circ}C$, the surface area of SiO$_2$-B$_2$O$_3$ membrane was 354.398 $m^2$/, the median pore diameter was 0.0048 ${\mu}{\textrm}{m}$, and the particle size of SiO$_2$-B$_2$O$_3$ membrane was 7 nm. The separation properties of the gas mixture ($H_2$/$N_2$) through the SiO$_2$-B$_2$O$_3$ membrane was studied as a function of pressure. The real separation factor($\alpha$) of SiO$_2$-B$_2$O$_3$ membrane for $H_2$/$N_2$ gas mixture was 4.68 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$) and tail separation factor((equation omitted)) were increased as the pressure of permeation cell increased.

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF

Study on Photoelectrochemical Etching of Single Crystal 6H-SiC (단결정 6H-SiC의 광전화학습식식각에 대한 연구)

  • 송정균;정두찬;신무환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.117-122
    • /
    • 2001
  • In this paper, we report on photoelectrochemical etching process of 6H-SiC semiconductor wafer. The etching was performed in two-step process; anodization of SiC surface to form a deep porous layer and thermal oxidation followed by an HF dip. Etch rate of about 615${\AA}$/min was obtained during the anodization using a dilute HF(1.4wt% in H$_2$O) electrolyte with the etching potential of 3.0V. The etching rate was increased with the bias voltage. It was also found out that the adition of appropriate portion of H$_2$O$_2$ into the HF solution improves the etching rate. The etching process resulted in a higherly anisotropic etching characteristics and showed to have a potential for the fabrication of SiC devices with a novel design.

  • PDF

A Study on the Properties of $SiO_2$ Thin Films using Sol-Gel Method (솔젤벱에 의해 제작된 $SiO_2$ 박막의 물성에 관한 연구)

  • You Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.561-565
    • /
    • 2004
  • SiO₂ thin films are fabricated using sol-gel method and dipping method. Gelation time is faster according to increasing the amount of H₂O except H₂O/Si(OC₂H/sub 5/)₄=4. Initial viscosity is highest at H₂O/Si(OC₂H/sub 5/)₄=6. Gelation time is faster according to increasing the amount of CH₃COOH. The relative dielectric constant of thin films decreases a little according to increasing the measuring frequency. The dielectric dissipation factor of thin films increases a little below 100kHz and it increases rapidly over 100kHz.