• Title/Summary/Keyword: SiC-Si composite

Search Result 806, Processing Time 0.032 seconds

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF

Effects of Metalloid Elements on the Mechanical Properties of Fe-Based Bulk Amorphous Alloys

  • Kim, Yongchan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.671-675
    • /
    • 2016
  • In this study, the glass-forming ability and mechanical properties of newly developed Fe-Mn-Cr-Mo-B-C-P-Si-Al bulk amorphous alloys were investigated, and metalloid elements such as B, C, and P were found to have a strong influence on the properties of the Fe-based amorphous alloys. When the total metalloid content (B, C, and P) is less than 5 %, only the crystal phase is formed, but the addition of more than 10 % metalloid elements enhances the glass forming ability. In particular, the alloys with 10 % metalloid content exhibit the best combination of very high compressive strength (~2.8 GPa) and superior fracture elongation (~30 %) because they consist of crystal/amorphous composite phases.

Aging Characteristics of Al P/M Composites with Variation of Ceramic Contents

  • Min, Kyung-Ho;Chang, Si-Young;Kim, Deok-Soo;Kim, Ji-Soon;Kim, Young-Do
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1065-1066
    • /
    • 2006
  • The aging behavior of sintered Al composites with various ceramic contents was investigated. 2xxx series blended powder was used as the starting powder. Ceramic contents were 0wt.% and 5wt.%. The blended powders were compacted at 250MPa. The sintering process was performed at $620^{\circ}C$ for 60min in a $N_2$ atmosphere. Each part was solution-treated at $518^{\circ}C$ for 60min and aged at $180^{\circ}C$. The Rockwell hardness at the peak aging time increased with ceramic contents. However, the peak aging time at maximum hardness was reduced with increased ceramic contents.

  • PDF

Optical, Mechanical and Tribological Properties of Boronnitride Dispersed Silicon Nitride Ceramics

  • Joshi, Bhupendra;Fu, Zhengyi;Niihara, Koichi;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.444-449
    • /
    • 2010
  • Transparent ceramics are used in new technology because of their excellent mechanical properties over glasses. Transparent ceramics are nowadays widely used in armor, laser windows, and in high temperature applications. Silicon nitride ceramics have excellent mechanical properties and if transparent silicon nitride is fabricated, it can be widely used. h-BN has a lubricating property and is ductile. Therefore, adding h-BN to silicon nitride ceramics gives a lubricating property and is also machinable. Translucent silicon nitride was fabricated by hot-press sintering (HPS) and 57% transmittance was observed in the near infrared region. A higher wt. % of h-BN in silicon nitride ceramics does not favor transparency. The optical, mechanical, and tribological properties of BN dispersed polycrystalline $Si_3N_4$ ceramics were affected by the density, ${\alpha}:{\beta}$-phase ratio, and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of $\alpha-Si_3N_4$, AlN, MgO, and h-BN at $1850^{\circ}C$. The composite contained from 0.25 to 2 wt. % BN powder with sintering aids (9% AlN + 3% MgO). A maximum transmittance of 57% was achieved for the 0.25 wt. % BN doped $Si_3N_4$ ceramics. Fracture toughness increased and wear volume and the friction coefficient decreased with an increase in BN content. The properties such as transmittance, density, hardness, and flexural strength decreased with an increase in content of h-BN in silicon nitride ceramics.

Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics (MgO-CaO-Al2O3-SiO2 glass 첨가제 함량이 AlN의 물성에 미치는 영향)

  • Kim, Kyung Min;Baik, Su-Hyun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.494-500
    • /
    • 2018
  • In this study, the effect of the content of $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to $1600^{\circ}C$. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over $70W/m{\cdot}K$ and a dielectric loss tangent (tan ${\delta}$) below $0.6{\times}10^{-3}$, with up to 10 wt% MCAS content.

Electrochemical Performances of Spherical Silicon/Carbon Anode Materials Prepared by Hydrothermal Synthesis (수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성)

  • Choi, Na Hyun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.326-332
    • /
    • 2021
  • In this study, a spherical carbon composite material containing nano-silicon was synthesized using hydrothermal synthesis, and coated with petroleum pitch to prepare an anode material to investigate the electrochemical characteristics. Hydrothermal synthesis was performed by varying molar concentration, and the pitch was coated using THF as an organic solvent to prepare a composite material. The physical properties of anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances were investigated by cycle, C-rate, cyclic voltammetry and electrochemical impedance tests in 1.0 M LiPF6 electrolyte (EC : DMC : EMC = 1 : 1 : 1 vol%). The pitch-coated silicon/carbon composite (Pitch@Si/C-1.5) with sucrose of 1.5 M showed a spherical shape. In addition, a high initial capacity of 1756 mAh/g, a capacity retention ratio of 82% after 50 cycles, and an excellent rate characteristic of 81% at 2 C/0.1 C were confirmed.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증)

  • Lee, Eun Ju;Lee, Jong Hoon;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.409-418
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -$NH_2$, -$CH_2$- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and $50^{\circ}C$, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Composite and Spark Plasma Sintering of the Atomized Fe Amorphous Powders and Wire-exploded Cu Nanopowder in Liquid (가스분무 Fe계 비정질 분말과 유체 내 전기선 폭발에 의한 나노 Cu 분말의 복합화와 방전플라즈마 소결)

  • Kim, Jin-Chun;Goo, Wang-Heo;Yoo, Joo-Sik
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Fe based ($Fe_{68.2}C_{5.9}Si_{3.5}B_{6.7}P_{9.6}Cr_{2.1}Mo_{2.0}Al_{2.0}$) amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of ${\sim}\;nm$200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.

Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature (폴리실리콘 기판 위에 형성된 코발트 니켈 복합실리사이드 박막의 열처리 온도에 따른 물성과 미세구조변화)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.564-570
    • /
    • 2006
  • Silicides have been required to be below 40 nm-thick and to have low contact resistance without agglomeration at high silicidation temperature. We fabricated composite silicide layers on the wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance, surface composition, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a X-ray diffractometer, an Auger electron spectroscopy, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the fast metal diffusion along the silicon grain boundary lead to the poly silicon mixing and inversion. Our results imply that we may consider the serious thermal instability in designing and process for the sub-0.1 um CMOS devices.