DOI QR코드

DOI QR Code

Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics

MgO-CaO-Al2O3-SiO2 glass 첨가제 함량이 AlN의 물성에 미치는 영향

  • Kim, Kyung Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Baik, Su-Hyun (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 김경민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 백수현 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 류성수 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2018.11.28
  • Accepted : 2018.12.20
  • Published : 2018.12.28

Abstract

In this study, the effect of the content of $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to $1600^{\circ}C$. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over $70W/m{\cdot}K$ and a dielectric loss tangent (tan ${\delta}$) below $0.6{\times}10^{-3}$, with up to 10 wt% MCAS content.

Keywords

References

  1. Y. Baik and R. A. L. Drew: Key Eng. Mater., 122-124 (1996) 553. https://doi.org/10.4028/www.scientific.net/KEM.122-124.553
  2. R. E. Simons: Solid State Technol., 26 (1983) 131. https://doi.org/10.1016/0038-1101(83)90114-4
  3. C. Zweben: JOM, 50 (1998) 47. https://doi.org/10.1007/s11837-998-0128-6
  4. Y. Kurokawa, Z. Utsumi, H. Takamizawa, T. Kamata and S. Noguchi: IEEE Trans. Compon., Hybrids, Manuf. Technol., 8 (1985) 247. https://doi.org/10.1109/TCHMT.1985.1136500
  5. T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie and R. A. Cutler: J. Am. Ceram. Soc., 80 (1997) 1421.
  6. T. B. Troczynski and P. S. Nicholson: J. Am. Ceram. Soc., 72 (1989) 1488. https://doi.org/10.1111/j.1151-2916.1989.tb07684.x
  7. E. Streicher, T. Chartier, P. Bosch, M. F. Denanot and J. Rabier: J. Eur. Ceram. Soc., 6 (1990) 23. https://doi.org/10.1016/0955-2219(90)90031-A
  8. J. Jarrige, K. Bouzouita, C. Doradoux and M. Billy: J. Eur. Ceram. Soc., 12 (1993) 279. https://doi.org/10.1016/0955-2219(93)90103-X
  9. K. Watari, H. J. Hwang, M. Toriyama and S. Kanzaki: J. Mater. Res., 14 (1999) 1409. https://doi.org/10.1557/JMR.1999.0191
  10. Y. Liu, H. Zhou, L. Qiao and Y. Wu: J. Mater. Sci. Lett., 18 (1999) 703. https://doi.org/10.1023/A:1006692111736
  11. L. Qiao, H. Zhou, H. Xue and S. Wang: J. Eur. Ceram. Soc., 23 (2003) 61. https://doi.org/10.1016/S0955-2219(02)00079-1
  12. H. S. Zhao, L. Chen, N. Z. Gao, K. H. Zhang and Z. Q. Li: J. Zhejiang Univ. Sci. A, 10 (2009) 109. https://doi.org/10.1631/jzus.A0820397
  13. K. P. Hong, I. J. Choi, J. W. Jung, H. R. Choi, Y. S. Cho, J. Kwak. and D. H. Kang: Int. J. Appl. Ceram. Technol., 10 (2013) E25. https://doi.org/10.1111/j.1744-7402.2012.02825.x
  14. C. F. Yang, C. M. Cheng, H. H. Chung and C. C. Chan: Key Eng. Mater., 336-338 (2007) 1868. https://doi.org/10.4028/www.scientific.net/KEM.336-338.1868
  15. H. J. Lee, W. S. Cho, H. J. Kim, W. Pan, M. Shahid and S. S. Ryu: Electron. Mater. Lett., 12 (2016) 732. https://doi.org/10.1007/s13391-016-6087-0
  16. S. H. Baik, K. M. Kim and S. S. Ryu: J. Korean Powder Metall. Inst., 25 (2018) 426. https://doi.org/10.4150/KPMI.2018.25.5.426
  17. S. Jang and S. Kang: Ceram. Int., 38S (2012) S543.
  18. C. F. Yang: Ceram. Int., 24 (1998) 243. https://doi.org/10.1016/S0272-8842(96)00040-5
  19. S. Kume, M. Yasuoka, N. Omura and K. Watari: J. Eur. Ceram. Soc., 25 (2005) 2791. https://doi.org/10.1016/j.jeurceramsoc.2005.03.141