• Title/Summary/Keyword: Si-doped

Search Result 820, Processing Time 0.029 seconds

Characterization of Delta-Doped P-Type SiC Films (델타 도핑한 P형 SiC막의 평가)

  • Kim, Tae-Seong;Jeong, Woo-Seong;Nam, Hae-Kon
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.46-52
    • /
    • 1990
  • Novel a-Si solar cells with delta-doped(${\delta}x$-doped) P-layer have been fabricated to enhance the hole concentration of the P-layers. The ${\delta}-$doped P-layer consists of very thin B sheets of 0.1-0.5 atomic layers and undoped a-SiC multi-layers. B-layers were prepared by photo-CVD and pyrolysis technique. The structural, optical and electrical characteristics of the delta-doped P-layer films were evaluated by means of FTIR, AES and SIMS. As the results of this study, it was found that the ${\delta}$-doped P-layer showed much superior optical and electrical characteristics than those of conventional uniformly B-doped a-Si layers. 12.5% energy conversion efficiency was achieved for the Cell with ${\delta}$-doped P-layer.

  • PDF

Electrical Properties of MOS Capacitors and Transistors with in-situ doped Amorphous Si Gate (증착시 도핑된 비정질 Si 게이트를 갖는 MOS 캐패시터와 트랜지스터의 전기적 특성)

  • 이상돈;이현창;김재성;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.107-116
    • /
    • 1994
  • In this paper, The electrical properties of MOS capacitors and transistoras with gate of in-situ doped amorphous Si and poly Si doped by POCI$_3$. Under constant current F-N stress, MOS capacitors with in-situ doped amorphous Si gate have shown the best resistance to degradation in reliabilty properties such as increase of leakage current, shift of gate voltage (V$_{g}$). shift of flat band voltage (V$_{fb}$) and charge to breakdown(Q$_{bd}$). Also, MOSFETs with in-situ doped amorphous Si gate have shown to have less degradation in transistor properties such as threshold voltage, transconductance and drain current. These improvements observed in MOS devices with in-situ doped amorphous Si gate is attributed to less local thinning spots at the gate/SiO$_2$ interface, caused by the large grain size and the smoothness of the surface at the gate/SiO$_2$ interface.

  • PDF

Electrical Characteristics of $\delta$-doped SiGe p-channel MESFET ($\delta$ 도핑된 SiGe p-채널 MESFET의 특성 분석)

  • 이관흠;이찬호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.541-544
    • /
    • 1998
  • A SiGe p-channel MESFET using $\delta-doped$ layers is designed and the considerable enhancement of the current driving capability of the device is observed from the result of simulation. The channel consists of double $\delta-doped$ layers separated by a low-doped spacer which consists of Si and SiGe. A quantum well is formed in the valence band of the Si/SiGe heterojunction and much more holes are accumulated in the SiGe spacer than those in the Si spacer. The saturation current is enhanced by the contribution of the holes inthe spacer. Among the design parameters that affect the performance of the device, the thickness of the SiGe layer and the Ge composition are studied. The thickness of $0~300\AA$ and the Ge composition of 0~30% are investigated, and the saturation current is observed to be increased by 45% compared with a double $\delta-doped$ Si p-channel MESFET.

  • PDF

Silicidation and Thermal Stability of the So/refreactory Metal Bilayer on the Doped Polycrystalline Si Substrate (Co/내열금속/다결정 Si 구조의 실리사이드화와 열적안정성)

  • 권영재;이종무
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.604-610
    • /
    • 1999
  • Silicide layer structures and morphology degradation of the surface and interface of the silicide layers for he Co/refractory metal bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The CoSi-CoSi2 phase transition temperature is lower an morphology degradation of the silcide layer occurs more severely for the Co/refractorymetal bilayer on the P-doped polycrystalline Si substrate than on the single Si substrate. Also the final layer structure and the morphology of the films after silicidation annealing was found to depend strongly upon the interlayer metal. The layer structure after silicidation annealing of Co/Hf/doped-poly Si is Co-Hf alloy/polycrystalline CoSi2/poly Si substrate while that of Co/Nb is polycrystalline CoSi2/NbSi2/polycrystalline CoSi2/poly Si.

  • PDF

Refractive index control of F-doped SiOC : H thin films by addition fluorine (Fluorine 첨가에 의한 F-doped SiOC : H 박막의 저 굴절률 특성)

  • Yoon, S.G.;Kang, S.M.;Jung, W.S.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.47-51
    • /
    • 2007
  • F-doped SiOC : H thin films with low refractive index were deposited on Si wafer and glass substrate by plasma enhanced chemical vapor deposition (PECVD) as a function of rf powers, substrate temperatures, gas rates and their composition flow ratios ($SiH_4,\;CF_4$ and $N_2O$). The refractive index of the F-doped SiOC : H film continuously decreased with increasing deposition temperature and rf power. As $N_2O$ gas flow rate decreased, the refractive index of the deposited films decreased down to 1.3778, reaching a minimum value at rf power of 180W and $100^{\circ}C$ without $N_2O$ gas. The fluorine content of F-doped SiOC : H film increased from 1.9 at% to 2.4 at% as the rf power was increased from 60 W to 180 W, which results in the decrease of refractive index.

pH Effects at Doped Si Semiconductor Interfaces (Doping된 Si 반도체 세계에서 pH 효과)

  • 천장호;라극환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1859-1864
    • /
    • 1990
  • The effect of H+ and OH- ion concentrations at doped Si semiconductor/pH buffer solution interfaces were investigated in terms of cyclic current-voltage characteristics. The effects of space charge on oppositely doped Si semiconductors, i.e., p-and n-Si semiconductors, can be effectively applied to study the pH effects and the slow surface states at the interfaces. The adsorptions of H+ and OH- inons on the doped Si semiconductor surfaces are physical adsorption rather than chemical adsorption. Adsorptive processes and charging effects of the slow surface states can be explained as the potential barrier variations and the related current-voltage characteristics at the interfaces. Under forward bias, the charged slow surface states on the p-and n-si semiconductor surface are donor and acceptor slow surface states, respectively. The effects of minority carriers on the slow surface states can be neglected at the doped Si semiconductor interfaces.

  • PDF

The Thermoelectric Properties of p-type SiGe Alloys Prepared by RF Induction Furnace (고주파 진공유도로로 제작한 p형 SiGe 합금의 열전변환물성)

  • 이용주;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.432-437
    • /
    • 2000
  • Thermoelectric properties of p-type SiGe alloys prepared by a RF inductive furnace were investigated. Non-doped Si80Ge20 alloys were fabricated by control of the quantity of volatile Ge. The carrier of p-type SiGe alloy was controlled by B-doping. B doped p-type SiGe alloys were synthesized by melting the mixture of Ge and Si containing B. The effects of sintering/annealing conditions and compaction pressure on thermoelectric properties (electrical conductivity and Seebeck coefficient) were investigated. For nondoped SiGe alloys, electrical conductivity increased with increasing temperatures and Seebeck coefficient was measured negative showing a typical n-type semiconductivity. On the other hand, B-doped SiGe alloys exhibited positive Seebeck coefficient and their electrical conductivity decreased with increasing temperatures. Thermoelectric properties were more sensitive to compaction pressure than annealing time. The highest power factor obtained in this work was 8.89${\times}$10-6J/cm$.$K2$.$s for 1 at% B-doped SiGe alloy.

  • PDF

Excimer Laser-Assisted In Situ Phosphorus Doped $Si_{(1-x)}Ge_x$ Epilayer Activation

  • Bae, Ji-Cheul;Lee, Young-Jae
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.247-252
    • /
    • 2003
  • This paper presents results from experiments on laser-annealed SiGe-selective epitaxial growth (LA-SiGe-SEG). The SiGe-SEG technology is attractive for devices that require a low band gap and high mobility. However, it is difficult to make such devices because the SiGe and the highly doped region in the SiGe layer limit the thermal budget. This results in leakage and transient enhanced diffusion. To solve these problems, we grew in situ doped SiGe SEG film and annealed it on an XMR5121 high power XeCl excimer laser system. We successfully demonstrated this LA-SiGe-SEG technique with highly doped Ge and an ultra shallow junction on p-type Si (100). Analyzing the doping profiles of phosphorus, Ge compositions, surface morphology, and electric characteristics, we confirmed that the LA-SiGe-SEG technology is suitable for fabricating high-speed, low-power devices.

  • PDF

Irradiation Induced Defects in a Si-doped GaN Single Crystal by Neutron Irradiation

  • Park, Il-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing electron magnetic resonance(EMR), Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of $2{\times}10^{17}$ neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, $A_1$(TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much broader or was much more broadened than that for the unirradiated one. The observed EMR center with the g value of 1.952 in a neutron irradiated Si-doped GaN may be assigned to a Si-related complex donor.

Silicidation of the Co/Ti Bilayer on the Doped Polycrystalline Si Substrate (다결정 Si기판 위에서의 Co/Ti 이중층의 실리사이드화)

  • Kwon, Young-Jae;Lee, Jong-Mu;Bae, Dae-Lok;Kang, Ho-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.579-583
    • /
    • 1998
  • Silicide layer structures, agglomeration of silicide layers, and dopant redistributions for the Co/Ti bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The $CoSi_2$ phase transition temperature is higher and agglomeration of the silicide layer occurs more severely for the Co/Ti bilayer on the doped polycrystalline Si substrate than on the single Si substrate. Also, dopant loss by outdiffusion is much more significant on the doped polycrystalline Si substrate than on the single Si substrate. All of these differences are attributed to the grain boundary diffusion and heavier doping concentration in the polycrystalline Si. The layer structure after silicidation annealing of Co/ Tildoped - polycrystalline Si is polycrystalline CoSi,/polycrystalline Si, while that of Co/TiI( 100) Si is Co- Ti- Si/epi- CoSi,/(lOO) Si.

  • PDF