• Title/Summary/Keyword: Si-C composites

Search Result 737, Processing Time 0.027 seconds

Effect of Matrix Microstructure on Creep Properties of Squeeze Cast Magnesium Matrix Composites (용탕 단조한 Mg복합재료의 크립특성에 미치는 기지조직의 영향)

  • Kim, Byeong-Ho;Son, Jae-Hyoung;Park, Kyung-Chul;Park, Yong-Ho;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2009
  • Effect of matrix microstructure on creep behaviors of squeeze cast magnesium matrix composites was investigated. Aluminum borate whisker was used as reinforcement and AZ31, AS52 and Sr added AS52 Mg alloys were used for matrix alloys. The reinforcement was distributed homogeneously and defect-free composite was manufactured. Creep tests were carried out at the temperature of $150^{\circ}C$ under the applied stress of 50 and 100 MPa for Mg alloys and Mg MMCs, respectively. The creep resistance of Mg MMCs was in this order: AS52-Sr > AS52 AZ31 MMCs. Void initiation during creep mainly occurred at $Mg/Mg_{17}Al_{12}$ interface and propagation went along grain boundaries. On the other hand, $Mg_2Si$ phase was not attributed to the creep void initiation.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

Synthesis and Characterization of the Ag-doped TiO2

  • Lee, Eun Kyoung;Han, Sun Young
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the photo-deposition method was used to introduce Ag onto the surface of TiO2 to synthesize an Ag-TiO2 composite. The effects of the varying amounts of AgNO3 precursor and annealing time periods on the Ag content in the composites, as well as their antibacterial characteristics under visible light conditions were studied. SEM analysis revealed the spherical morphology of the Ag-TiO2 composite. Compared with TiO2, the Ag particles were too small to be observed. An XPS analysis of the Ag-TiO2 surface confirmed the Ag content and showed the peak intensities for elements such as Ag, Ti, O, C, and Si. The highest Ag content was observed when 33.3 wt.% of AgNO3 and an annealing time of 6 h were employed; this was the optimum annealing time for Ti-Ag-O bonding, in that the lowest number of O bonds and the highest number of Ag bonds were confirmed by XPS analysis. Superior antibacterial properties against Bacillus and Escherichia coli, in addition to the widest inhibition zones were exhibited by the Ag-TiO2 composite with an increased Ag content in a disk diffusion test, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%.

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD (MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성)

  • Kim, Y.S.;Song, W.S.;Lee, S.Y.;Choi, W.C.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.

Microwave Dielectric Properties of BaNd2Ti5O14−BaO−B2O3-K2O-SiO2-xTiO2 Glass Composites (BaO-B2O3-SiO2-K2O-xTiO2 Glass의 첨가에 의한BaNd2Ti5O14-Glass 복합체의 마이크로파 유전특성)

  • Kim, Dong-Eun;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Hyung-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.110-115
    • /
    • 2007
  • The effects of $TiO_2$ in the glasses on the shrinkage and dielectric properties of BNT-glass composites have been investigated. Without $TiO_2$ addition, BNT-glass composite showed two humps in the shrinkage curve, which are related with crystallization of $BaTi(BO_3)_2\;and\;Bi_4Ti_3O_{12}$. However, the increase of $TiO_2$ addition resulted in the decrease of 2nd hump in the shrinkage. The increased dielectric constant with $TiO_2$ addition might be due to the reduced crystallization of $Bi_4Ti_3O_{12}$. A dielectric constant of 52, a quality factor of 5088 GHz, and a temperature coefficient of resonant frequency of $-0.16ppm/^{\circ}C$ were obtained for a specimen containing $TiO_2$-added glasses, without sacrificing the benefits of high ${\varepsilon}_r$ and low TCF of BNT ceramics.

Low temperature and dieletric properties of $Al_2O_3$/CAS glass composites by dose and particle size of $Al_2O_3$ filler and sintering time ($Al_2O_3$ 충전제의 함량, 입도 및 소결시간에 따른 $Al_2O_3$/CAS glass 복합체의 저온 소결 및 유전 특성)

  • Kim, Kwan-Soo;Kim, Myung-Soo;Yoon, Sang-Ok;Park, Jong-Guk;Kim, So-Jung;Kim, In-Tae;Kim, Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.176-176
    • /
    • 2009
  • Influences of dose and particle size of $Al_2O_3$ filler and sintering time on the dielectric properties of $Al_2O_3$ filler/CaO-$Al_2O_3-SiO_2$ (CAS) glass composites were investigated with a view to applying the composites to the substrate material in low temperature co-firing ceramic (LTCC) technology. The increased addition of $Al_2O_3$ filler with the particle size of 1 ${\mu}m$ monotonically decreased the density of the sintered specimen at a given temperature, while sintering of the 10 wt% $Al_2O_3$ added specimen at $925^{\circ}C$ for 2 h demonstrated 96.0 % of the relative density, dielectric constant of 6.34, and quality factor of 2,760 GHz. As for the influence of the particle size of the $Al_2O_3$ filler, there existed an optimum particle size (30 ${\mu}m$) to ensure successful densification (96.5 %) of the 10 wt% $Al_2O_3$/CAS composites at $925^{\circ}C$ for 2 h, at which condition the specimen demonstrated dielectric constant of 5.45 and quality factor of 3,740 GHz. When the influence of the sintering time of the 10 wt% $Al_2O_3$) (30 ${\mu}m$) added specimen was investigated at the sintering temperature of $925^{\circ}C$, an overly long sintering time degraded dielectric properties due to the over-sintering and the significant growth of the second phase such as anorthite, while the sintering for 4 h demonstrated 96.58 % of the relative density, dielectric constant of 5.4, and quality factor of 4,050 GHz. These results demonstrate the feasibility of the investigated material as the substrate material in LTCC technology.

  • PDF

Effect of Temperature on the Deposition Rate and Bending Strength Characteristics of Chemical Vapor Deposited Silicon Carbide Using Methyltrichlorosilane (메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향)

  • Song, Jun-Baek;Im, Hangjoon;Kim, Young-Ju;Jung, Youn-Woong;Ryu, Hee-Beom;Lee, Ju-Ho
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The effects of deposition temperature on chemical vapor deposited silicon carbide (CVD-SiC) were studied to obtain high deposition rates and excellent bending strength characteristics. Silicon carbide prepared at $1250{\sim}1400^{\circ}C$ using methyltrichlorosilane(MTS : $CH_3SiCl_3$) by hot-wall CVD showed deposition rates of $95.7{\sim}117.2{\mu}m/hr$. The rate-limiting reaction showed the surface reaction at less than $1300^{\circ}C$, and the mass transfer dominant region at higher temperature. The activation energies calculated by Arrhenius plot were 11.26 kcal/mole and 4.47 kcal/mole, respectively. The surface morphology by the deposition temperature changed from $1250^{\circ}C$ pebble to $1300^{\circ}C$ facet structure and multi-facet structure at above $1350^{\circ}C$. The cross sectional microstructures were columnar at below $1300^{\circ}C$ and isometric at above $1350^{\circ}C$. The crystal phases were all identified as ${\beta}$-SiC, but (220) peak was observed from $1300^{\circ}C$ or higher at $1250^{\circ}C$ (111) and completely changed to (220) at $1400^{\circ}C$. The bending strength showed the maximum value at $1350^{\circ}C$ as densification increased at high temperatures and the microstructure changed from columnar to isometric. On the other hand, at $1400^{\circ}C$, the increasing of grain size and the direction of crystal growth were completely changed from (111) to (220), which is the closest packing face, so the bending strength value seems to have decreased.

Improvement of Electrical and Thermal Characteristics of Nano-Micro Epoxy Composite

  • Cho, Sung-Hoon;Kim, Yu-Min;Kwon, Jung-Hun;Lim, Kee-Joe;Jung, Eui-Hwan;Lee, Hung-Kyu;Shin, Pan-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.160-163
    • /
    • 2011
  • Polymer nanocomposite has been attracting more attention as a new insulation material because homogeneous dispersion of nano-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy-based nanocomposites were made, and the AC breakdown strengths of Nano filler and micro-$SiO_2$ filler mixtures of epoxy-based composites were analyzed using sphere-to-sphere electrodes. Moreover, nano- and microfiller combinations were investigated as an approach to practical application of nanocomposite insulation materials. Its composition ratio was 100 (resin):82 (hardener):1.5 (accelerator). AC breakdown tests were performed at room temperature ($25^{\circ}C$), $80^{\circ}C$, and $100^{\circ}C$ in the vicinity of $T_g$ ($90^{\circ}C$). Thermal conductivity was measured using TC-30.

Thermal Shock Resistance of $Al_2$TiO$_5$ Ceramics Prepared from Electrofused Powders (전기용융 분말로부터 합성된 $Al_2$TiO$_5$ Ceramics의 열충격 저항성)

  • ;Constantin Zografou
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1061-1069
    • /
    • 1998
  • The thermal instability of Al2TiO5 Ceramics was contrlled by solid solution with MgO SiO2 and ZrO2 through electrofusion in an arc furnace. The thermal expansion properties of Al2TiO5 composites show the hysteresis due to the strong anisotropy of The crystal axes of these material. These phenomena are ex-plained by the opening and closing of microcracks. The difference in microcracking temperatures e.g 587.6(ATG2), 405.9(ATG3) and 519.7$^{\circ}C$(ATG4) is caused by the difference in grain size and stabilizer type. The thermal shock behaviour under cyclic conditions between 750-1400-75$0^{\circ}C$ show no change in mi-crostructure and phase assemblage for all three stabilized specimens. After the thermal loading test at 110$0^{\circ}C$ for 100hrs. ATG1 and ATG2 materials decomposes completely to its components corundum and ru-tile in both cases. However with approximatelly 20% retention of the Al2TiO5 Thus in order to prevent decomposition of the stabilized material in the critical temperature range 800-130$0^{\circ}C$ it must be traversed within a short period of time.

  • PDF

Study on Erosion of Carbon Fiber Reinforced Plastic Composite (탄소섬유강화복합재료의 마식에 관한 연구)

  • Kim, Am-Kee;Kim, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.291-297
    • /
    • 2008
  • The solid particle erosion behaviour of unidirectional carbon fiber reinforced plastic (CFRP) composites was investigated. The erosive wear of these composites was evaluated at different impingement angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), different impact velocities (40, 55, 60, 70m/s) and at three different fiber orientations ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$). The erodent was SiC sand with the size $50-100{\mu}m$ of irregula. shapes. The result showed ductile erosion behaviour with maximum erosion rate at $30^{\circ}$ impingement angle. The fiber orientations had a significant influence on erosion. The erosion rate was strongly dependent on impact velocity which followed power law $E{\propto}\;V^n$. Based on impact velocity (V), impact angle (${\alpha}$) and fiber orientation angle (${\beta}$), a method was proposed to predict the erosion rate of unidirectional fiber reinforced composites.