Browse > Article
http://dx.doi.org/10.5757/JKVS.2009.18.3.229

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD  

Kim, Y.S. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Song, W.S. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Lee, S.Y. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Choi, W.C. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Park, C.Y. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Publication Information
Journal of the Korean Vacuum Society / v.18, no.3, 2009 , pp. 229-235 More about this Journal
Abstract
Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.
Keywords
Carbon nanotubes; Microwave plasma chemical vapor deposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Teresa de los Arcos, Michael Gunnar Garnier, Jin Won Seo, Peter Oelhafen, Verena Thommen, and Daniel Mathys, J. Phys. Chem. B., 108, 7728 (2004)   DOI   ScienceOn
2 M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, J. Phys. Chem. C., 111, 17887 (2007)   DOI   ScienceOn
3 Don N. Futaba, Kenji Hata, Takeo Yamada, Kohei Mizuno, Motoo Yumura, and Sumio Iijima, Phys. Rev. Lett., 95, 056104 (2005)   DOI   ScienceOn
4 Byung Hee Hong, Ju Young Lee, Tobias Beetz, Yimei Zhu, Philip Kim, and Kwang S. Kim, J. Am. Chem. Soc., 127, 15336 (2005)   DOI   ScienceOn
5 Guangyu Zhang, David Mann, Li Zhang, Ali Javey, Yiming Li, Erhan Yenilmez, Qian Wang, James P. McVittie, Yoshio Nishi, James Gibbons, and Hongjie Dai, Proc. Natl Acad. Sci., 102, 16141 (2005)   DOI   ScienceOn
6 Anastasios John Hart and Alexander H. Slocum, J. Phys. Chem. B., 110 8250 (2006)   DOI   ScienceOn
7 R. S. Wagner and W. C. Ellis, Appl. Phys. Letts., 4, 8 (1964)
8 YeoHeung Yun, Vesselin Shanov, Yi Tu, and Srinivas Subramaniam, and Mark J. Schulz, J. Phys. Chem. B., 110, 23920 (2006)   DOI   ScienceOn
9 D. Ferrer, T. Tanii, I. Matsuys, G. Zhong, S. Okamoto, and H. Kawarada, Appl. Phys. Lett., 88, 033116 (2006)   DOI   ScienceOn
10 Kenji Hata, Don N. Futaba, Kohei Mizuno, Tatsunori Namai, Motoo Yumura, and Sumio Iijima, Science, 306, 1362 (2004)   DOI   PUBMED   ScienceOn
11 Ali Javey, Jing Guom Qian Wang, Mark Lundstrom, and Hongjie Dai, Nature, 424, 654 (2003)   DOI   ScienceOn
12 Ji Ung Lee, Appl. Phys. Lett., 87, 073101 (2005)   DOI   ScienceOn
13 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes" Imperial College, London (1998). Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)   DOI   ScienceOn
14 J. S. Sakamoto and B. Dunn, J. Electrochem. Soc., 149, A26 (2002)   DOI   ScienceOn
15 H. M. Christen, A. A. Puretzky, H. Cui, K. Belay, P. H. Fleming, D. B. Geohegan, and D. H. Lowndes, Nano Lett., 4, 1939 (2004)   DOI   ScienceOn
16 Gyula Eres, A. A. Puretzky, D. B. Geohegan, and H. Cui, Appl. Phys. Lett., 84, 1759 (2004)   DOI   ScienceOn
17 YeoHeung Yun, Vesselin Shanov, Yi Tu, Srinivas Subramaniam, and Mark J. Schulz, J. Phys. Chem. B., 110, 23920 (2006)   DOI   ScienceOn
18 Guofang Zhong, Takayuki Iwasaki, John Robertson, and Hiroshi Kawarada, J. Phys. Chem. B., 111, 1907 (2007)   DOI   ScienceOn
19 A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett., 86, 1118 (2001)   DOI   ScienceOn
20 Qing Cao, Ming-Gang Xia, Moonsub Shim, and A. Rogers, Adv. Funct. Mater., 16, 2355 (2006)   DOI   ScienceOn
21 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science, 287, 622 (2000)   DOI   PUBMED   ScienceOn
22 Seung Youb Lee, Dong Heon Ryu, Jun Yong Hong, Min Hyeng Yeom, Ji Hoon Yang, Won Chel Choi, Myeng Hoi Kwon, and Chong-Yun Park, J. Korean. Vac. Soc., 16, 291 (2007)   과학기술학회마을   DOI   ScienceOn
23 W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, and C.-Y. Park, J. Korean. Vac. Soc., 16, 377 (2007)   과학기술학회마을   DOI   ScienceOn