• Title/Summary/Keyword: Si membrane

Search Result 395, Processing Time 0.023 seconds

The Slow Component of the Second Inward Current in the Rabbit Sino-Atrial Node (토끼 동방결절에서 완만내향전류의 Slow Component에 관한 연구)

  • Earm, Yung-E;Kim, Ki-Whan;Hwang, Sang-Ik
    • The Korean Journal of Physiology
    • /
    • v.18 no.1
    • /
    • pp.9-17
    • /
    • 1984
  • The second inward current $(i_{si})$ was studied by the two microelectrode voltage clamp technique in the sino-atrial node of the rabbit. The slow component $(i_{si,2})$ of the second inward current was sometimes identified and $i_{si}$ behaved as if it were a mixture of two currents. We analysed the $(i_{si,2})$ in relation to membrane potential and frequency of voltage clamp pulses. 1) Membrane was held at -40mV which was usually found to be zero current level. When depolarizing pulses were applied, the slow inward current $(i_{si})$ was activated. 2) It was shown that there are three categories of the $i_{si}$ activation by the low level of depolarizing clamp pulses. Moderately fast inward current with single component was developed in most cases in the presence of tetrodotoxin(TTX). But sometimes there was two separate components of $i_{si}$ activation in the peak level and the time course. Thirdly the only slow component of $i_{si}$ was found in rare cases. 3) The activation of $(i_{si,2})$ was dependent upon membrane potential. The $i_{si}$ shows two separate peaks during clamp depolarizations and higher clamp pulses lead to fusion of the peaks. 4) The $i_{si,2}$ activation showed that it decreased with repetitive clamp pulses and it was more evident in higher frequencies(2Hz)(negative staircase).

  • PDF

Fabrication of micro heaters with uniform-temperature area on poly 3C-SiC membrane and its characteristics (다결정 3C-SiC 멤브레인 위에 균일한 온도분포를 갖는 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.349-352
    • /
    • 2009
  • This paper describes the fabrication and characteristics of micro heaters built on AlN($0.1{\mu}m$)/3C-SiC($1{\mu}m$) suspended membranes by surface micromachining technology. In this work, 3C-SiC and AlN films are used for high temperature environments. Pt thin film was used as micro heaters and temperature sensor materials. The resistance of temperature sensor and the power consumption of micro heaters were measured and calculated. The heater is designed for operating temperature up to about $800^{\circ}C$ and can be operated at about $500^{\circ}C$ with a power of 312 mW. The thermal coefficient of the resistance(TCR) of fabricated Pt resistance of temperature detector(RTD)'s is 3174.64 ppm/$^{\circ}C$. A thermal distribution measured by IR thermovision is uniform on the membrane surface.

Substrate Effects on the Response of PZT Infrared Detectors (상이한 기판조건에 따른 PZT 적외선 감지소자의 성능 변화)

  • Go, Jong-Su;Gwak, Byeong-Man;Liu, Weiguo;Zhu, Weiguang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.428-435
    • /
    • 2002
  • Pyroelectric $Pb(Zr_{0.3}Ti_{0.7})O_3$ (PZT30/70) thin film IR detectors has been fabricated and characterised. The PZT30/70 thin film was deposited onto $Pt/Ti/Si_3N_4/SiO_2/Si$ substrate by the sol-gel process. Four different substrate conditions were studied for their effects on the pyroelectric responses of the IR detectors. The substrate conditions were the combinations of the Si etching and the Pt/Ti patterning. In the Si etched substrate, the $Si_3N_4/SiO_2$ composite layer was used as silicon etch-stop, and was used as the membrane to support the PZT pyroelectric film element as well. The measured pyroelectric current and voltage responses of detectors fabricated on the micro-machined thin $Si_3N_4/SiO_2$ membrane were two orders higher than those of the detectors on the bulk-silicon. For detectors on the membrane substrate, the Pt/Ti patterned detectors showed a 2-times higher pyroelectric response than that of not-patterned detectors. On the other hand, the pyroelectric response of the detectors on the not-etched Si substrate was almost the same, regardless of the Pt/Ti patterning. It was also found that the rise time strongly depended on the substrate thickness: the thicker the substrate was, the longer the rise-time.

Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa

  • Ha, Sang-Won;Kim, Yun-Jeong;Kim, Won-Yong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Functional defects in mitochondria are involved in the induction of cell death in cancer cells. We assessed the toxic effect of camptothecin against the human cervical and uterine tumor cell line SiHa with respect to the mitochondria-mediated cell death process, and examined the combined effect of camptothecin and anticancer drugs. Camptothecin caused apoptosis in SiHa cells by inducing mitochondrial membrane permeability changes that lead to the loss of mitochondrial membrane potential, decreased Bcl-2 levels, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH. Combination of camptothecin with other anticancer drugs (carboplatin, paclitaxel, doxorubicin and mitomycin c) or signaling inhibitors (farnesyltransferase inhibitor and ERK inhibitor) did not enhance the camptothecin-induced cell death and caspase-3 activation. These results suggest that camptothecin may cause cell death in SiHa cells by inducing changes in mitochondrial membrane permeability, which leads to cytochrome c release and activation of caspase-3. This effect is also associated with increased formation of reactive oxygen species and depletion of GSH. Combination with other anticancer drugs (or signaling inhibitors) does not appear to increase the anti-tumor effect of camptothecin against SiHa cells, but rather may reduce it. Combination of camptothecin with other anticancer drugs does not seem to provide a benefit in the treatment of cervical and uterine cancer compared with camptothecin monotherapy.

Effect of Antifouling Composite Membrane on Membrane Bioreactor: A Review (방오성 복합막의 막생물반응기에 대한 영향)

  • Lee, Bo Woo;Lee, Sunwoo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In membrane bioreactor (MBR), activated sludge degrade the biological component and membrane process separate this bacterial flocks as well the suspended solids. However, membrane fouling is one of the major issues in MBR. In this review, composite membrane used in MBR to overcome fouling is discussed. It is classified into membrane containing carbon and noncarbon materials. Introducing graphene, graphene oxide (GO) and carbon nanotubes or their modified part into pristine membrane enhance hydrophilicity of the composite membrane. Inorganic materials like silicon dioxide (SiO2) or titanium dioxide (TiO2) are also incorporated for preparing composite membrane to increase its water flux.

Microstructural Change of Doped-Alumina Membrane (도핑된 알루미나 여과막의 미세구조 변화)

  • 이진하;최성철;한경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1040-1047
    • /
    • 1999
  • After alumina sol was prepared by Yoldas process supported membranes were fabricated by adding ce and Re solution and SiO2 sol into alumina sol. The particle size of alumina sol was 11 nm and it was monodispersed transparent and stable for long time. The pore size of un-doped membrane started to increase to about 7,5nm at 1000$^{\circ}C$ and it was grown to twice (about 15nm) at 1100$^{\circ}C$ However the pore size of doped alumina was uniform to 1100$^{\circ}C$. The effect of retardation of grain growth was superior in SiO2 addition to that of Ce and Ru Because SiO2 doped samples transformed to needed-like phase and densified at 1200$^{\circ}C$ their application in membranes was limited. Ce and Ru doped sample showed vermicular structure identical to the un-doped ones at 1200$^{\circ}C$ But the particle size was smaller than that of un-doped ones.

  • PDF

Thickness Dependence of Solution Deposited HfOx Sensing Membrane for Electrolyte-Insulator-Semiconductor (EIS) Structures (용액 공정으로 증착된 HfOx 감지막을 갖는 Electrolyte-Insulator-Semiconductor 소자의 두께 의존성)

  • Lee, In-Kyu;Cho, Won-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.233-237
    • /
    • 2013
  • We fabricated electrolyte-insulator-semiconductor (EIS) devices using a solution process and measured the sensing properties of EIS devices according to the thicknesses of sensing membrane. For high pH sensitivity and better stability properties, we used $SiO_2/HfO_x$ (OH) layer as a sensing membrane. In this work, $HfO_x$ sensing membranes were deposited on 5 nm thick $SiO_2$ buffer layer by spin coater with thicknesses of 15, 31, 42, 55 nm, respectively. As a result, we founded that the thickness of $HfO_x$ sensing membrane affects to sensitivity and chemical stability of EIS device. Especially, the EIS device with 42 nm thick $HfO_x$ membrane showed superior sensing ability in terms of pH-sensitivity, linearity, hysteresis voltage and drift rate characteristics than the other devices. In conclusion, we confirmed that it is possible to improve the sensing ability and the chemical stability properties using optimized thickness of sensing membrane and proper annealing process.

Preparation of Microporous Silica Membrane from TEOS-$H_2O$ System and Separation Of $H_2$-$N_2$ Gas Mixture (TEOS-$H_2O$계로부터 다공성 실리카 막의 제조 및 수소-질소 혼합기체의 분리)

  • 강태범;이현경;이용택
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • The porous silica membrane was prepared from Si(${OC}_2H_5)_4-H_2O$ system by sol-gel method. To investigate the characteristics of gels and porous silica membrane, we examined gels and porous silica membrane using TG-DTA, X-ray diffractometer, IR spectrophotometer, BET, SEM and TEM. The optimum mole ratio of Si(OC$_2$H$_{5}$)$_4$ : $H_2O$ $C_2$H$_{5}$OH for porous silica membrane was 1 : 4.5 : 4. The porous silica membrane was obtained by heat treatment of the gel above 700 $^{\circ}C$. The specific surface area of sintered gel was 3.8 $m^2$/g to 902.3 $m^2$/g at 100 $^{\circ}C$ to 1100 $^{\circ}C$ The pore size of sintered gel was in the range 20 $\AA$~ 50$\AA$. The particle size of sintered gel was 15 nm to 30 nm at 30$0^{\circ}C$ to 700$^{\circ}C$. The performance of the porous silica membrane was investigated for the separation of $H_2$/$N_2$ gas mixture. Gas separation through porous silica membrane depends upon Knudsen flow and surface flow. The veal separation factor($\alpha$) of $H_2$/$N_2$ was 5.17 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor( $\bar{B}$) increased as the pressure of permeation cell Increased.sed.

  • PDF

Preparation and Characterization of Kalsilite ($KAISiO_4$) as a Novel Inorganic Membrane Material (새로운 무기분리막 재료로서의 Kalsilite ($KAISiO_4$) 제조와 물성)

  • Lee, Yong-Taek;Ahn, Hyo-Seong
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.103-107
    • /
    • 2008
  • Membrane process has been focused as an alternative separation process because not only it exhibits a high selectivity compared with a traditional distillation process, but also it is known to be an energy saving separation process. Inorganic membrane, especially zeolite membrane, has been studied since it can be operated in severe conditions compared to the organic membranes. Recently, new zeolite materials are tested as an inorganic membrane material to overcome disadvantages of existing zeolite membranes. Kalsilite can be used as an inorganic membrane material for gas separation and selective water separation from water/organic mixtures because it is expected to be hydrophilic resulted from Si/Al ratio of 1 like zeolite 4A and has a narrow pore size of 0.36 nm. In this study, kalsilite was synthesized by a new economical hydrothermal process using Si : Al : K : $H_2O$ mole ratio of 1 : 1 : 8 : 60. The synthesized kalsilite powder was confirmed by XRD and has a mean diameter of $2.73{\mu}m$. The vapor adsorption test showed the synthesized kalsilite is hydrophilic.

Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica (과량 실리카 도입을 통한 고분자 전해질막 표면 개질)

  • Park, Chi Hoon;Kim, Ho Sang;Lee, Young Moo
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • In this study, the silica nanoparticles were considerably chosen to improve a dimensional stability, proton transport and electrochemical performance of the resulting inorganic-organic nanocomposite membranes. For this purpose, hydrophobic silica (Aerosil$^{(R)}$ 812, Degussa) and hydrophilic silica (Aerosil$^{(R)}$ 380, Degussa) nanoparticles were, respectively, introduced into a Sulfonated poly(arylene ether sulfone) (SPAES) polymer matrix. The $SiO_2$ particles are evenly dispersed in a SPAES matrix by the aid of a non-ionic surfactant (Pluronics$^{(R)}$ L64). A $SiO_2$ content plays an important role in membrane microstructures and membrane properties such as proton conductivity and water uptake. Therefore, to study nanocomposite membranes with excessive amount of silica, the content of silica nanoparticles were increased up to 5 wt%. Interestingly, a hydrophobic $SiO_2$ containing nanocomposite membrane showed better electrochemical performance (29% higher than pristine SPAES) despite of low proton conductivity due to its adhesive properties with a catalyst layer in a single cell test. All the silica-SPAES membranes exhibited better performance than a pristine SPAES membrane.