Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.301

Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica  

Park, Chi Hoon (Department of Energy Engineering, Hanyang University)
Kim, Ho Sang (Department of Chemical Engineering, Hanyang University)
Lee, Young Moo (Department of Energy Engineering, Hanyang University)
Publication Information
Membrane Journal / v.24, no.4, 2014 , pp. 301-310 More about this Journal
Abstract
In this study, the silica nanoparticles were considerably chosen to improve a dimensional stability, proton transport and electrochemical performance of the resulting inorganic-organic nanocomposite membranes. For this purpose, hydrophobic silica (Aerosil$^{(R)}$ 812, Degussa) and hydrophilic silica (Aerosil$^{(R)}$ 380, Degussa) nanoparticles were, respectively, introduced into a Sulfonated poly(arylene ether sulfone) (SPAES) polymer matrix. The $SiO_2$ particles are evenly dispersed in a SPAES matrix by the aid of a non-ionic surfactant (Pluronics$^{(R)}$ L64). A $SiO_2$ content plays an important role in membrane microstructures and membrane properties such as proton conductivity and water uptake. Therefore, to study nanocomposite membranes with excessive amount of silica, the content of silica nanoparticles were increased up to 5 wt%. Interestingly, a hydrophobic $SiO_2$ containing nanocomposite membrane showed better electrochemical performance (29% higher than pristine SPAES) despite of low proton conductivity due to its adhesive properties with a catalyst layer in a single cell test. All the silica-SPAES membranes exhibited better performance than a pristine SPAES membrane.
Keywords
excessive amount of silica; SPAES/$SiO_2$ nanocomposite membrane; Proton exchange membrane (PEM); fuel cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Hamnett, "Handbook of fuel cells-fundamentals, technology and applications", John Wiley & Sons Ltd., Chichester, UK (2003).
2 M. Kim, Y. Lee, J. Kim, H. Kim, T. Lim, and I. Moon, "Multiscale modeling and simulation of direct methanol fuel cell", Membrane Journal, 20, 29 (2010).
3 C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011).   DOI
4 K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. S. Byun, "Fabrication and characterization of partially covalent-crosslinked poly(arylene ether sulfone)s for use in a fuel cell", Membrane Journal, 18, 274 (2008).
5 D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membrane Journal, 21, 389 (2011).
6 E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier, and M. Pineri, "Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/M(z+) by electrodialysis comparison with a perfluorosulfonic membrane", J. Membr. Sci., 160, 127 (1999).   DOI   ScienceOn
7 R. Wycisk and P. N. Pintauro, "Sulfonated polyphosphazene ion-exchange membranes", J. Membr. Sci., 119, 155 (1996).   DOI   ScienceOn
8 J. Y. Kim, S. Mulmi, C. H. Lee, H. B. Park, Y. S. Chung, and Y. M. Lee, "Preparation of organic-inorganic nanocomposite membrane using a reactive polymeric dispersant and compatibilizer: Proton and methanol transport with respect to nano-phase separated structure", J. Membr. Sci., 283, 172 (2006).   DOI   ScienceOn
9 H.-Y. Jung, K.-Y. Cho, K. A. Sung, W.-K. Kim, and J.-K. Park, "The effect of sulfonated poly(ether ether ketone) as an electrode binder for direct methanol fuel cell (DMFC)", J. Power Sources, 163, 56 (2006).   DOI
10 F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002).   DOI   ScienceOn
11 C. H. Lee, S. Y. Lee, Y. M. Lee, and J. E. McGrath, "Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells", Langmuir, 25, 8217 (2009).   DOI
12 K.-K. Lee, T.-H. Kim, T.-S. Hwang, and Y. T. Hong, "Novel sulfonated poly(arylene ether sulfone) composite membranes containing tetraethyl orthosilicate (TEOS) for PEMFC applications", Membrane Journal, 20, 278 (2010).
13 D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membrane Journal, 21, 389 (2011).
14 D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membrane Journal, 22, 155 (2012).
15 C. H. Park, H. K. Kim, C. H. Lee, H. B. Park, and Y. M. Lee, "Nafion$^{(R)}$ nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance", J. Power Sources, 194, 646 (2009).   DOI
16 C. H. Lee, S. Y. Hwang, J. Y. Sohn, H. B. Park, J. Y. Kim, and Y. M. Lee, "Water-stable crosslinked sulfonated polyimide-silica nanocomposite containing interpenetrating polymer network", J. Power Sources, 163, 339 (2006).   DOI
17 C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, and Y. M. Lee, "Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC)", J. Membr. Sci., 303, 258 (2007).   DOI   ScienceOn