DOI QR코드

DOI QR Code

Thickness Dependence of Solution Deposited HfOx Sensing Membrane for Electrolyte-Insulator-Semiconductor (EIS) Structures

용액 공정으로 증착된 HfOx 감지막을 갖는 Electrolyte-Insulator-Semiconductor 소자의 두께 의존성

  • Lee, In-Kyu (Department of Elcetronic Materials Engineering, Kwangwoon University) ;
  • Cho, Won-Ju (Department of Elcetronic Materials Engineering, Kwangwoon University)
  • 이인규 (광운대학교 전자재료공학과) ;
  • 조원주 (광운대학교 전자재료공학과)
  • Received : 2013.05.21
  • Accepted : 2013.05.27
  • Published : 2013.05.31

Abstract

We fabricated electrolyte-insulator-semiconductor (EIS) devices using a solution process and measured the sensing properties of EIS devices according to the thicknesses of sensing membrane. For high pH sensitivity and better stability properties, we used $SiO_2/HfO_x$ (OH) layer as a sensing membrane. In this work, $HfO_x$ sensing membranes were deposited on 5 nm thick $SiO_2$ buffer layer by spin coater with thicknesses of 15, 31, 42, 55 nm, respectively. As a result, we founded that the thickness of $HfO_x$ sensing membrane affects to sensitivity and chemical stability of EIS device. Especially, the EIS device with 42 nm thick $HfO_x$ membrane showed superior sensing ability in terms of pH-sensitivity, linearity, hysteresis voltage and drift rate characteristics than the other devices. In conclusion, we confirmed that it is possible to improve the sensing ability and the chemical stability properties using optimized thickness of sensing membrane and proper annealing process.

Keywords

References

  1. M. J. Schoning and A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)", The Analyst., Vol. 127, pp. 1137-1151, 2002. https://doi.org/10.1039/b204444g
  2. B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, "A biosensor that uses ion-chnannel switches", Nature., Vol. 387, pp. 580-583, 1997. https://doi.org/10.1038/42432
  3. A. Poghossian, D.-T. Mai, Yu. Mourzina, and M. J. Schoning, "Impedance effect of an ion-sensitive membrane: characterisation of an EMIS sensor by impedance spectroscopy, capacitance-voltage and constant-capacitance method", Sens. Actuator BChem., Vol. 103, pp. 423-428, 2004. https://doi.org/10.1016/j.snb.2004.04.071
  4. T. M. Pan and J. C. Lin, "A $TiO_2/Er_2O_3$ stacked electrolyte/insulator/semiconductor film pH-sensor for the detection of urea", Sens. Actuator B-Chem., Vol. 138, pp. 474-479, 2009. https://doi.org/10.1016/j.snb.2009.02.063
  5. H.-J. Jang, T.-E. Bae and W.-J. Cho, "Improved sensing performance of polycrystalline silicon base dual-gate ion-sensitive field-effect transistors using high-k stacking engineered sensing membrane", Applied Physics Letters, Vol. 100, No. 253703, pp. 1-4, 2012.
  6. J. C. Chou and C. Y. Weng, "Sensitivity and hysteresis effect in $Al_2O_3$ gate pH-ISFET", Materials Chemistry and Physics, Vol. 71, pp. 120-124, 2001. https://doi.org/10.1016/S0254-0584(00)00513-7
  7. T. F. Lu, J. C. Wang C. M. Yang, C. P. Chang, K. I. Ho, C. F. Ai, and C. S. Lai, "Non-ideal effects improvement of SF6 plasma treated hafnium oxide film based on electrolyte-insulator-semiconductor structure for pH-sensor application", Microelectronics Reliability, Vol. 50, pp. 742-746, 2010. https://doi.org/10.1016/j.microrel.2010.01.029
  8. T. M. Pan, J. C. Lin, M. H. Wu, and C. S. Lai, "Study of high-k $Er_2O_3$ thin layers as ISFET sensitive insulator surface for pH detection", Sens. Actuator BChem., Vol. 138, pp. 619-624, 2009. https://doi.org/10.1016/j.snb.2009.01.051
  9. S. P. Tiwari, X. H. Zhang, W. J. Potscavage, and B. Kippelen, "Low-voltage solution-processed nchannel organic field-effect transistors with high-k $HfO_2$ gate dielectrics grown by atomic layer deposition", Applied Physics Letters, Vol. 95, No. 223303, pp. 1-3, 2009.
  10. J. Y. Oh, H. J. Jang, W. J Cho, and M. S. Islam, "Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with $Al_2O_3/SiO_2$ sensing membrane", Sens. Actuator BChem., Vol. 171, pp. 238-243, 2012.
  11. H. J. Jang and W. J. Cho, "Fabrication of high performance ion-sensitive field-effect-transistors using an engineered sensing membrane for biosensor application", Jpn. J. Appl. Phys., Vol. 51, No. 02BL05, pp. 1-4, 2012.
  12. S.-J. Seo, C. G. Choi, Y. H. Hwang, and B.-S. Bae, "High performance solution-processed amorphous zinc tin oxide thin film transistor", J. Phys. D: Appl. Phys., Vol. 42, No. 035106, pp. 1-5, 2008. https://doi.org/10.1051/epjap:2008045
  13. L. Setti, A. F. Morgera, I. Mencarelli, A. Filippini, B. Ballarin, and M. D. Biase, "An HRP-based amperometric biosensor fabricated by thermal inkjet printing", Sens. Actuator B-Chem., Vol. 126, pp. 252-257, 2007. https://doi.org/10.1016/j.snb.2006.12.015
  14. Y. B. Yoo, J. H. Park, S. J. Lee, K. M. Song, and H. K. Baik, "Low-temperature, solution-processed zinc tin oxide thin-film transistors fabricated by thermal annealing and microwave irradiation", Jpn. J. Appl. Phys., Vol. 51, No. 040201, pp. 1-3, 2012.
  15. W. Y. Lin, R. Muller, K. Myny, S. Steudel, J. Genoe, and P. Heremaus, "Room-temperature solution-processed high-k gate dielectrics for large area electronics applications", Organic Electronics., Vol, 12, pp. 955-960, 2011. https://doi.org/10.1016/j.orgel.2011.03.014
  16. C. E. Lue, J. C. Wang, D. G. Pijanowska, C. M. Yang, I. S. Wang, H. C. Lee, and C. S. Lai, "Hysteresis effect on traps of Si3N4 sensing membranes for pH difference sensitivity", Microelectron. Reliability., Vol. 50, pp. 738-741, 2010. https://doi.org/10.1016/j.microrel.2010.01.026