• Title/Summary/Keyword: Si and Mo addition

Search Result 89, Processing Time 0.03 seconds

Local Oxidation Characteristics on Implanted 4H-SiC by Atomic Force Microscopy (원자힘 현미경을 이용한 이온 주입된 4H-SiC 상의 국소 산화 특성)

  • Lee, Jung-Ho;Ahn, Jung-Joon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.294-297
    • /
    • 2012
  • In this work, local oxidation behavior in phosphorous ion-implanted 4H-SiC has been investigated by using atomic force microscopy (AFM). The AFM-local oxidation (AFM-LO) has been performed on the implanted samples, with and without activation anneal, using an applied bias (~25 V). It has been clearly shown that the post-implantation annealing process at $1,650^{\circ}C$ has a great impact on the local oxidation rate by electrically activating the dopants and by modulating the surface roughness. In addition, the composition of resulting oxides changes depending on the doping level of SiC surfaces.

Fabrication of polycrystalline Si films by rapid thermal annealing of amorphous Si film using a poly-Si seed layer grown by vapor-induced crystallization

  • Yang, Yong-Ho;An, Gyeong-Min;Gang, Seung-Mo;An, Byeong-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • We have developed a novel crystallization process, where the crystallization temperature is lowered compared to the conventional RTA process and the metal contamination is lowered compared to the conventional VIC process. A very-thin a-Si film was deposited and crystallized at $550^{\circ}C$ for 3 h by the VIC process and then a thick a-Si film was deposited and crystallized by the RTA process at $680^{\circ}C$ for 5 min using the VIC poly-Si layer as a crystallization seed layer. The RTA crystallized temperature could be lowered up to $50^{\circ}C$, compared to RTA process alone. The poly-Si film appeared a needle-like growth front and relatively well-arranged (111) orientation. In addition, the Ni concentration in the poly-Si film was lowered to $3{\times}10^{17}\;cm^{-3}$ and that at the poly-Si/$SiO_2$ interface was lowered to $5{\times}10^{19}\;cm^{-3}$. The reduction in metal contamination could be greatly helpful to achieve a low leakage current in poly-Si TFT, which is the critical parameter for commercialization of AMOLED.

  • PDF

Characterization of instability in a-Si:H TFT LCD utilizing copper as electrodes

  • Kuan, Yung-Chia;Liang, Shuo-Wei;Chiu, Hsian-Kun;Sun, Kuo-Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.747-751
    • /
    • 2006
  • The hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) with copper as source and drain electrode has been fabricated to obtain its transfer characteristics and stressed with positive and negative bias to investigate the instability variation comparing to conventional MoW-Al based TFT device. The results show that there is no copper diffusion into active layer of a-Si:H TFT, even during the thermal process. In addition, a 15-inch XGA a Si:H TFT LCD display utilizing Cu as gate electrodes has been developed.

  • PDF

Purification of Si using Catalytic CVD

  • Jo, Chul-Gi;Lee, Kyeong-Seop;Song, Min-Wu;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.383-383
    • /
    • 2009
  • Silicon is commercially prepared by the reaction of high-purity silica with wood, charcoal, and coal, in an electric arc furnace using carbon electrodes, so called the metallurgical refining process, which produces ~98% pure Si (MG-Si). This can be further purified to solar grade silicon (SoG-Si) by various techniques. The most problematic impurity elements are B and P because of their high segregation coefficients. In this study, we explored the possibility of the using Cat-CVD for Si purification. The existing hot-wire CVD was modified to accommodate the catalyzer and the heating source. Mo boat (1.5 cm ${\times}$ 1 cm ${\times}$ 0.2 cm) was used as a heating source. Commercially available Si was purchased from Nilaco corporation (~99% pure). This powder was kept in the Mo-boat and heated to the purification temperature. In addition to the purification by cat-CVD technique, other methods such as thermal CVD, plasma enhanced CVD, vacuum annealing was also tried. It is found that the impurities are reduced to a great extent when treated with cat-CVD method.

  • PDF

Effects of Annealing on Solution Processed n-ZTO/p-SiC Heterojunction (용액 공정으로 형성된 n-ZTO/p-SiC 이종접합 열처리 효과)

  • Jeong, Young-Seok;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.481-485
    • /
    • 2015
  • We investigated the effects of annealing on the electrical and thermal properties of ZTO/4H-SiC heterojunction diodes. A ZTO thin film layer was grown on p-type 4H-SiC substrate by using solution process. The ZTO/SiC heterojunction structures annealed at $500^{\circ}C$ show that $I_{on}/I_{off}$ increases from ${\sim}5.13{\times}10^7$ to ${\sim}1.11{\times}10^9$ owing to the increased electron concentration of ZTO layer as confirmed by capacitance-voltage characteristics. In addition, the electrical characterization of ZTO/SiC heterojunction has been carried out in the temperature range of 300~500 K. When the measurement temperature increased from 300 K to 500 K, the reverse current variation of annealed device is higher than as-grown device, which is related to barrier height in the ZTO/SiC interface. It is shown that annealing process is possible to control the electrical characteristics of ZTO/SiC heterojunction diode.

Elevated Temperature Properties of Austenitic Heat-resistant Ductile Irons (오스테나이트계 내열 구상흑연주철의 고온 특성)

  • Choe, Kyeong-Hwan;Seo, Joung-Hyck;Kim, Su-Hwang
    • Journal of Korea Foundry Society
    • /
    • v.37 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • A new form of austenitic heat-resistant ductile iron was developed and its microstructures and elevated temperature properties were compared to those of Ductile Ni-Resist D5S. According to JMatPro calculations, it was predicted that Mo-rich carbides would be crystallized before the eutectic reaction starts in the developed alloy. At the austenite cell boundaries of the developed alloy, both Mo-rich carbides and Cr-rich carbides were found. In addition, Ni-silicides were found adjacent to Cr-rich carbides in D5S specimen and were identified as $Ni_2Si$. The developed alloy also had greater yield strength and lower tensile strength levels with less elongation due to the dissolution of Mo atoms into the austenite matrix and the precipitation of Mo-rich carbides. From the results of elevated temperature tensile tests and stress-rupture tests, it was found that the developed alloy had elevated temperature properties superior to those of D5S. This was due to the pinning effect of the dissolved Mo atoms in the austenite matrix.

Effect of B4C Addition on the Microstructures and Mechanical Properties of ZrB2-SiC Ceramics (ZrB2-SiC 세라믹스의 미세구조와 기계적 물성에 미치는 B4C 첨가효과)

  • Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Kim, Kyung-Ja;Nahm, Sahn;Kim, Seong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.578-582
    • /
    • 2010
  • $ZrB_2$ has a melting point of $3245^{\circ}C$ and a relatively low density of $6.1\;g/cm^3$, which makes this a candidate for application to ultrahigh temperature environments over $2000^{\circ}C$. Beside these properties, $ZrB_2$ is known to have excellent resistance to thermal shock and oxidation compared with other non-oxide engineering ceramics. In order to enhance such oxidation resistance, SiC was frequently added to $ZrB_2$-based systems. Due to nonsinterability of $ZrB_2$-based ceramics, research on the sintering aids such as $B_4C$ or $MoSi_2$ becomes popular recently. In this study, densification and high-temperature properties of $ZrB_2$-SiC ceramics especially with $B_4C$ are investigated. $ZrB_2$-20 vol% SiC system was selected as a basic composition and $B_4C$ or C was added to this system in some extents. Mixed powders were sintered using hot pressing (HP). With sintered bodies, densification behavior and high-temperature (up to $1400^{\circ}C$) properties such as flexural strength, hardness, and so on were examined.

The Effect of the Composition of Metallizing Paste on the Bonding Strength in the Joining of Al2O3/Cu to Cu (Al2O3/Cu 접합에서 Metallizing paste의 조성이 접합강도에 미치는 영향)

  • Yoon, Jong-Hyuk;Park, Hyun Gyoon
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.65-70
    • /
    • 2013
  • In joining Alumina to copper plate by Mo-Mn metallizing process, the effects of the composition of metallizing paste on the bonding strength were investigated. The bonding strength increased with increasing Mn amount in the paste up to 20% but followed by the decrease with addition of Mn. The maximum bonding strength reached 50MPa at 20%Mn when heated to $1550^{\circ}C$ for 60minute. The addition of Si to the metallizing powder increased the bonding strength of the joint by enhancing the mechanical bonding between the Alumina and the metallizing layer due to the decrease of layer viscosity with the addition of $SiO_2$. It is thought that MnO reacted with $Al_2O_3$ to yield $MnAl_2O_4$ spinel, forming a joint.

Scanning Kelvin Probe Microscope analysis of Nano-scale Patterning formed by Atomic Force Microscopy in Silicon Carbide (원자힘현미경을 이용한 탄화규소 미세 패터닝의 Scanning Kelvin Probe Microscopy 분석)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.32-32
    • /
    • 2009
  • Silicon carbide (SiC) is a wide-bandgap semiconductor that has materials properties necessary for the high-power, high-frequency, high-temperature, and radiation-hard condition applications, where silicon devices cannot perform. SiC is also the only compound semiconductor material. on which a silicon oxide layer can be thermally grown, and therefore may fabrication processes used in Si-based technology can be adapted to SiC. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, we investigated that the local oxide growth on SiC under various conditions and demonstrated that an increased (up to ~100 nN) tip loading force (LF) on highly-doped SiC can lead a direct oxide growth (up to few tens of nm) on 4H-SiC. In addition, the surface potential and topography distributions of nano-scale patterned structures on SiC were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the nano-scale patterned on SiC was higher than that of original SiC surface. The results confirm the concept of the work function and the barrier heights of oxide structures/SiC structures.

  • PDF

Annealing Effect on controlling Self-Organized Ag/Ti Nanoparticles on 4H-SiC Substrate (4H-SiC기판 위의 자기구조화된 Ag/Ti 나노입자 제어를 위한 열처리 분석)

  • Kim, So-Mang;OH, Jong-Min;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.177-180
    • /
    • 2016
  • The effect of varying thickness of Ag/Ti metal bilayer and annealing time have investigated for controlling self-organized nanoparticles (NPs) on 4H-SiC substrate. In addition, Glass and Si substrate which have different surface energy from SiC were fabricated for analyzing interaction of agglomeration. The results of FE-SEM indicated the different formation behaviors of NPs in various ranges of fabrication condition. The surface energy was measured by using a Contact Angle Analyzer. The formation of network-like NPs was observed on Glass and 4H-SiC, respectively, whereas it was not the case on Si substrates. It has been found that the size of NPs increases with decreasing surface energy, due to particle size-dependent hydrophilic properties of substrates. The different formation behavior was explained by using Young's equation for the contact angles between the metal and different substrates.