Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.8.481

Effects of Annealing on Solution Processed n-ZTO/p-SiC Heterojunction  

Jeong, Young-Seok (Department of Electronic Materials Engineering, KwangWoon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, KwangWoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.8, 2015 , pp. 481-485 More about this Journal
Abstract
We investigated the effects of annealing on the electrical and thermal properties of ZTO/4H-SiC heterojunction diodes. A ZTO thin film layer was grown on p-type 4H-SiC substrate by using solution process. The ZTO/SiC heterojunction structures annealed at $500^{\circ}C$ show that $I_{on}/I_{off}$ increases from ${\sim}5.13{\times}10^7$ to ${\sim}1.11{\times}10^9$ owing to the increased electron concentration of ZTO layer as confirmed by capacitance-voltage characteristics. In addition, the electrical characterization of ZTO/SiC heterojunction has been carried out in the temperature range of 300~500 K. When the measurement temperature increased from 300 K to 500 K, the reverse current variation of annealed device is higher than as-grown device, which is related to barrier height in the ZTO/SiC interface. It is shown that annealing process is possible to control the electrical characteristics of ZTO/SiC heterojunction diode.
Keywords
Zinc tin oxide; Silicon carbide; Heterojunction; Solution process; Annealing process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. F. Felix, M. Aziz, C.I.L. de Araujo, W. M. de Azevedo, V. Anjos, E. F. da Silva Jr., and M. Henini, Semicond. Sci. Technol., 29 (2014)
2 Y. S. Choi, J. W. Kang, D. K. Hwang, and S. J. Park, IEEE Trans. Electron Dev., 57 (2010).
3 Y. H. Shin, M. D. Kim, J. E. Oh, M. S. Han, S. G. Kim, and K. S. Chung, Journal of the Korean Physical Society, 53, 2504 (2008).   DOI
4 F. Yakuphanoglu, Y. Caglar, M. Caglar, and S. Ilican, Materials Science in Semiconductor Processing 13, 137 (2010). [DOI: http://dx.doi.org/10.1016/j.mssp.2010.05.005]   DOI
5 Y. T. Shih, M. K. Wu, M. J. Chen, Y. C. Cheng, J. R. Yang, anzd M. Shiojiri, Appl. Phys. B, 98, 767 (2010). [DOI: http://dx.doi.org/10.1007/s00340-009-3809-0]   DOI
6 J. H. Lee, J. C. Jung, M. S. Kang, and S. M. Koo, Journal of Nanoscience and Nanotechnology, 13, 7033 (2013).   DOI
7 S. J. Seo, Y. H. Hwang, and B. S. Bae, Electrochemical and Solid-State Letters, 13 (2010).
8 S. H. Jeong, Y. M. Jeong, and J. H. Moon, J. Phys. Chem. C, 112 (2008). [DOI: http://dx.doi.org/10.1021/jp803475g]   DOI
9 I. Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, V. Lazorenko, A. Ievtushenko, M. Syvajarvi, V. Jokubavicius, and R. Yakimova, Solid-State Electronics 81, 72 (2013).   DOI   ScienceOn
10 C. Yuen, S. F. Yu, S. P. Lau, Rusli, and T. P. Chen, Appl. Phys. Lett., 86, 241111 (2005).   DOI
11 P. Chattopadhyay, J. Phys. D: Appl. Phys., 29 (1996).
12 D. K. Schroder, Semiconductor Materials and Device Characterization, 3rd ed. (2006)
13 J. S. Lee, Y. J. Kim, Y. U. Lee, Y. H. Kim, J. Y. Kwon, and M. K. Han, Jpn. J. Appl. Phys., 51, 061101 (2012). [DOI: http://dx.doi.org/10.7567/JJAP.51.061101]   DOI
14 Y. J. Kim, B. S. Yang, S. H. Oh, S. J. Han, H. W. Lee, J. Y. Heo, J. K. Jeong, and H. J. Kim, ACS Appl. Mater. Interfaces, 5, 3255 (2013).   DOI
15 H. Asil, K. Cinar, E. Gur, C. Coskun, and S. Tuzemen, International Journal of Physical Sciences, 8, 371 (2013).