• Title/Summary/Keyword: Shut Down System

Search Result 138, Processing Time 0.026 seconds

Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering (LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구)

  • Yoon, Jin Ho;Park, Ju Yeon;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

An Experimental Determination of a Swing Check Valve Closure Time in the Main Feed Water System of a Power Plant during Shut-down Process (발전소 주급수 계통 감발 과정에서의 스윙체크밸브 닫힘 시점의 실험적 결정)

  • Suh, Jin-Sung;Kim, Won-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.843-849
    • /
    • 2009
  • The reliable operation of a swing check valve in the main feed water system of a power plant is most essential for successful shout-down process. A failure to close the valve at proper time often leads to the instability of the main feed water system, or even to an emergency stop of the power plant. In reality it is a very difficult task to monitor the behavior of a swing check valve. Furthermore it is impossible to see the motion of the valve. In this work two measurements were carried out simultaneously to determine the precise valve closure time. The dynamic pressure measurements were made at the inlet and outlet regions of the swing check valve. The transient vibration of the valve housing in the direction of water flow was also measured, which enabled the measurement of the transient vibration of the valve housing near valve closure. By comparing the results produced from these measurements the precise valve closure time could be determined. By carrying out order tracking technique using the dynamic pressure signals and pump rpm signal, the complicated dynamic problems inside the main feed water system can be more easily dealt with. This measurement scheme might be implemented in a power plant on a real-time basis without much difficulty. If this could be implemented, valuable information essential for shut-down operations can readily be passed on to the main control room. The feasibility of this implementation was demonstrated by this experimental work.

Development of New Feed Mill Model Applying Combined Grind System (복합분쇄 시스템을 도입한 배합사료 공장의 새로운 모델 개발)

  • 박상빈;박경규;김태욱;윤홍선
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.439-450
    • /
    • 1997
  • Most of Korean feed mill has a pregrind system which was suitable for the processing of less number of ingredients and finished products, and good for the mash type feed product. But industries has been changed in production volume and cost, and also from mash to further processed products such as pelleted and extruded. Therefore, Korea feed industries now should change the process, especially the grinding system from the current pregrind to other grind system, but this change will cost a lot of investment and also loosing current grinding system, and should have production shut down during the construction period. To solve these problems, combined grinding system based on a new model mill has been developed. The combined grind system is combination of pregrind and postgrind system, which has the advantages of those two grind systems, and also which can allow to utilize existing pregrind system continuously without any production interruption due to new postgrind system construction. This newly developed model has been applied to the feed mill expansion project of `B`feed company in 1994, and it was very successful application and showed excellent results as we intended. The new model mill, combined grind system applied can save fixed asset investment because old pregrind system can be used as is, and also can reduce production cost and improve product quality. And the possibility of critical production shut down can be much lowered. Within this new grinding model development, multi-screen combination system has been developed for the better grinding texture quality and safer operation. This new model mill with combined grind system will be applied by most feed manufacturing plant and may enhance their production competitiveness, and the further study and development should be continued.

  • PDF

A Study on the Operation Method of Emergency Power System with Reserved Firefighting Power (RFP) (소방전원보존형 발전기(RFP)의 작동 방법에 관한 연구)

  • Lee, Won-Kang;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.29-34
    • /
    • 2012
  • The purpose of this study is to propose an effective operating method of a power generator used by the Emergency Power System in case of a simultaneous fire and of the limitations of the interlock system the power supply from the emergency power generator. On the Emergency Power System with Reserved Fire-fighting Power (RFP), in case of an overload, the collective control Emergency Power System signals the main circuit breaker to shut off the supply to the emergency load, leaving the supply to the firefighting load uninterrupted to the end. The sequential control Emergency Power System signals the firefighting power supply to shut off the fire stage of the emergency load and continues to monitor the power supply. If an overload happens again from increased firefighting load, the sequential control Emergency Power System sends a secondary signal to shut down the second stage of the emergency load.

A Study on the Fire Safety Measures of Korean Nuclear Power Plants (국내 원자력발전소 화재안전 대책에 관한 연구)

  • 김학중;손봉세;허만성
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2003.04a
    • /
    • pp.259-264
    • /
    • 2003
  • The fire protection system of Nuclear Power Plants(NPPs) is an integrated system that is applied multi-field technology. So, it needs synthetic design and analysis, that is, the plan of fire protection, fire compartment, fire detection, fire suppression, and success of safety shut down, etc. In case of a fire in NPPs, secure the safety of reactor and minimize the radioactivity contamination. For this purpose, perform the fire risk analysis and make up the deducted problem through the improvement of design or the change of operation process.

  • PDF

A Study on improvement of plating equipment for fire prevention (도금 공장의 화재 예방을 위한 도금장비 개선에 관한 연구)

  • Kim, Sung-Jae;Kim, Sung-Gon;Yoo, Woo-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • A number of plating companies have been exposed to the risk of fire due to unexpected temperature increasing of water or other reasons in a plating bath. Since the companies are not able to forecast the unexpected temperature increasing of plating bath and most of raw materials in the bath have low ignition temperature, it is easy to be exposed to the risk of fire. Thus, in previous study, we tried to monitor and notice the dangerous change of temperature of water immediately to prevent the risk of fire from plating process. However, unfortunately previous studies were not able to shut out the fundamental cause of fire since bath temperature sensor can detect air temperature when the level sensor was malfunctioned. In this paper we developed the Teflon heater which contains a built in temperature sensor and improved plating equipment system. Teflon heater is improved using Pt $100{\Omega}$ sensor which can detect until $600^{\circ}C$. When the bath temperature sensor detects over $60^{\circ}C$ or the Teflon heater sensor detects over $240^{\circ}C$ they temporarily shut down the heater to control temperature. Also relay completely shuts down main power when detects instant temperature is detected over 5% of $240^{\circ}C$ by the heater sensor to prevent teflon melting down and fire spreads. Developed plating equipment system can monitor a real time temperature in the teflon tube and bath water. Therefore we think the proposed plating equipment can eliminate the possibility of fire in plating processes fundamentally.

Design and Application of Forced Cooling System in Steam Turbine (증기터빈 강제냉각 장치의 설계 및 적용)

  • 김효진;류승우;강용호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.25-32
    • /
    • 1998
  • The forced cooling system is designed to shorten the overhaul time of steam turbine, which is important in view of economic concern of utility companies, Forced cooling of the hot turbine is achieved by suction of air flow into the turbine after the turbine shuts down. The heat transfer process by suction of air flow can cause thermal stress due to the thermal gradients. In this paper, the analysis of heat transfer is performed to calculate the air flow rate. Based on the prediction of cyclic fatigue damage and the experience, the cooling equipment is designed for shortening the cooling time of steam turbine.

  • PDF

A Study on the Transient Operation Algorithm in Micro-grid based on CVCF Inverter (CVCF 인버터 기반의 Micro-grid에 있어서 과도상태 운용알고리즘에 관한 연구)

  • Lee, Hu-Dong;Choi, Sung-Sik;Nam, Yang-Hyun;Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.526-535
    • /
    • 2018
  • Recently, in order to reduce the $CO_2$ emission in the island area, countermeasures to operate power system in a stable manner are being researched due to decrease of the operation rate in diesel generators and the increase of renewable energy sources. The phenomenon of energy sinking can be occurred if the output of renewable energy sources is larger than customer loads. Voltage of CVCF(constant voltage & constant frequency) battery could be increased rapidly according to the condition of SOC(state of charge) and blackout could be occurred due to shut-down of CVCF inverter, at carbon free island micro-grid based on the CVCF inverter. In order to overcome these problems, this paper proposes a transient operation algorithm in CVCF based micro-grid which in advance prevents shut-down of CVCF inverter during the energy sinking. And also this paper proposes the modeling of micro-grid including CVCF inverter, PV system, customer load using PSCAD/EMTDC S/W. From the results of micro-grid modeling based on the proposed algorithm, it is confirmed that CVCF based micro-grid can properly prevent shut-down of CVCF inverter according to SOC and battery voltage of CVCF inverter when energy sinking is occurred.

Development of 3-D. Displacement Measurement System for Critical Pipe of Fossil Power Plant (화력발전소 주배관 3차원 변위측정시스템 개발)

  • Song, G.W.;Hyun, J.S.;Ha, J.S.;Cho, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1198-1205
    • /
    • 2003
  • Most domestic fossil power plant have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe system have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plant, 3-dimensional displacement measurement system were developed for the on-line monitoring system. 3-D Measurement system was developed with using the LVDT type sensor and rotary encoder type sensor, this system was installed and operated on the real power plant successfully. In the future time, network system of on-line diagnosis for critical pipe will be designed.

  • PDF

An Implementation of FPGA Embedded System for Real-Time SONAR Signal Display Using the Triple Buffering Method (삼중 버퍼링 방법을 이용한 실시간 소나 신호 디스플레이를 위한 FPGA 임베디드 시스템의 구현)

  • Kim, Dong-Jin;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.173-182
    • /
    • 2014
  • The CRT monitor display system for SONAR signal that are commonly used in ships or naval vessels uses vector scanning method. Therefore the processing circuits of the system are complex. Also the purchase of parts is difficult as well as high-cost because the production had been shut down. FPGA-based embedded system is flexible to various digital applications because it can be able to simplify processing circuits and to make a easy customized design for end user, and it provides low-cost high-speed performance. In this paper, we describe an implementation of FPGA embedded system for real-time SONAR signal display using the triple buffering method to overcome some weakness of existing CRT system. Our system provides real-time acquisition and display capability of SONAR signal, and removes afterimage effect that is a critical problem of the system proposed in the preceding study.