• Title/Summary/Keyword: Shunt capacitor

Search Result 107, Processing Time 0.022 seconds

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.

A Highly Efficient Broadband Class-E Power Amplifier with Nonlinear Shunt Capacitance

  • Dang-Duy, Ninh;Ha-Van, Nam;Jeong, Daesik;Kim, Dong Hwan;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.221-227
    • /
    • 2017
  • A new approach to designing a broadband and highly efficient class-E power amplifier based on nonlinear shunt capacitance analysis is proposed. The nonlinear shunt capacitance method accurately extracts optimum class-E power amplifier parameters, including an external shunt capacitance and an output impedance, at different frequencies. The dependence of the former parameter on the frequency is considered to select an optimal value of external shunt capacitor. Then, upon determining the latter parameter, an output matching network is optimized to obtain the highest efficiency across the bandwidth of interest. An analytical approach is presented to design the broadband class-E power amplifier of a MOSFET transistor. The proposed method is experimentally verified by a 140-170 MHz class-E power amplifier design with maximum added power efficiency of 82% and output power of 34 dBm.

Harmonic Current Compensation based on Three-phase Three-level Shunt Active Filter using Fuzzy Logic Current Controller

  • Salim, Chennai;Benchouia, M.T.;Golea, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.595-604
    • /
    • 2011
  • A three-phase three-level shunt active filter controlled by fuzzy logic current controller which can compensate current harmonics generated by nonlinear loads is presented. Three-level inverters and fuzzy controllers have been successfully employed in several power electronic applications these past years. To improve the conventional pwm controller performance, a new control scheme based on fuzzy current controller is adopted for three-level (NPC) shunt active filter. The scheme is designed to improve compensation capability of APF by adjusting the current error using a fuzzy rule. The inverter current reference signals required to compensate harmonic currents use the synchronous reference detection method. This technique is easy to implement and achieves good results. To maintain the dc voltage across capacitor constant and reduce inverter losses, a proportional integral voltage controller is used. The simulation of global system control and power circuits is performed using Matlab-Simulink and SimPowerSystem toolbox. The results obtained in transient and steady states under various operating conditions show the effectiveness of the proposed shunt active filter based on fuzzy current controller compared to the conventional scheme.

Parameter Optimization for Vibration Control of a Cantilever Beam Using Piezoelectric Shunt Damping System (압전분기회로를 이용한 보 구조물의 진동제어 파라미터 최적화 해석)

  • Lim K.C.;Cho D.S.;Park W.C.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.918-921
    • /
    • 2005
  • According to the mechanical-electrical coupling characteristics and the electrical Impedance property of resistor-inductor-capacitor(RLC) series resonant circuit, the mechanical impedance analysis of a bimorph piezoceramic patch shunted with a series RLC resonant circuit is conducted. The displacement transfer function of a cantilever beam bonded with a piezoelectric shunt damping module is deduced in the case of single mode vibration of the beam. By the use of vibration damping theory of tuned mass damper system, the parameter optimization of piezoelectric shunt damping system is performed. The optimal resonant state of the shunting circuit can be obtained when the resister and conductor are optimally adjusted. Test results show that the vibration control effect as well improved with optimized piezoelectric shunt system.

  • PDF

Study on the Capacitor-self-excited Three-phase Synchronous Generator (A 캐패시터 자력식 삼상동기발전기에 관한 연구)

  • 정연택;김영동
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.425-432
    • /
    • 1984
  • This paper is to propse a new self-excitation method of synchronous generator. Instead of conventional exciter of synchronous generator, the additional winding which is arranged in addition to the armature winding, is used in this generator. The output terminal of the additional winding is connected to a capacitor and to a full wave rectifier in series. In this configuration, one source double excitation which is composed of capacitor-self-excitation by lead urrent and direct current excitation by rectifier, is induced. The result is that` The excetation efficency is improved greatly and output waveform is improved also. In three-phase synchronous generator using the new method of the one source double excitation, voltage element (shunt characteristics) and current element (series characteristics)are compounded in scalar by adapting star-point-open-rectifier system. The result is as following` The effect of load power factor angle on voltage regulation is reduced greatly, compound characteristics is become manifold by controlling capacity of capacitor, and transient response is improved.

  • PDF

The Basic Study on Unified Power Quality Conditioner (통합형 전력품질 개선장치에 관한 기초 연구)

  • Lee, Hyun-Ok;Oh, Sung-Chul;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1085-1087
    • /
    • 2001
  • This paper deals with single-phase unified power quality conditioner, which aims at the integration of series-active and shunt-active tilter. The series filter is used to compensate for the voltage distortions and the shunt filter is used to provide reactive power and counteract the harmonic current injected by the load. Also, the voltage of the DC link capacitor is controlled to a desired value by the shunt active filter. In order to verify the performance of the proposed conditioner, computer simulations using MATLAB/SIMULINK were demonstrated. The results confirm that the proposed conditioner shows excellent performance to eliminate the harmonics and voltage flickers generated at the singe-phase nonlinear load.

  • PDF

Study on Phase Balancing by Thyristor-Controlled Shunt Compensators (다이리스터제어 병렬보상기를 이용한 상평형에 관한 연구)

  • 차귀수;정태경;최성종;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.11
    • /
    • pp.133-140
    • /
    • 1982
  • In recent years, a number of thyristor-controlled shunt compensators have been used in industrial and utility systems for phase balancing, power-factor correction and flicker reduction. This paper describes a simple and basic control scheme and circuits for shunt compensator with a fixed capacitor and thyristor-controlled reactor. Feedforward-control scheme is applied, and compensating currents are computed from the symmetrical components of the disturbed system. A 8 bit microprocessor is used for the computation of the compensating currents as well as for the measurements of the symmetric components. A 3-phase 1 KVA compensator is developed and a good reduction of the unbalance factor of the power source is achieved using it.

  • PDF

Coordination Control of Voltage Between STATCOM and Reactive Power Compensation Devices in Steady-State

  • Park, Ji-Ho;Baek, Young-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.689-697
    • /
    • 2012
  • This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.

Control Strategy for Selective Compensation of Power Quality Problems through Three-Phase Four-Wire UPQC

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.576-582
    • /
    • 2011
  • This paper presents a novel control strategy for selective compensation of power quality (PQ) problems, depending upon the limited rating of voltage source inverters (VSIs), through a unified power quality conditioner (UPQC) in a three-phase four-wire distribution system. The UPQC is realized by the integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a three-phase, four-leg voltage source inverter (VSI), while a three-leg VSI is employed for the series APF of the three-phase four-wire UPQC. The proposed control scheme for the shunt APF, decomposes the load current into harmonic components generated by consumer and distorted utility. In addition to this, the positive and negative sequence fundamental frequency active components, the reactive components and harmonic components of load currents are decomposed in synchronous reference frame (SRF). The control scheme of the shunt APF performs with priority based schemes, which respects the limited rating of the VSI. For voltage harmonic mitigation, a control scheme based on SRF theory is employed for the series APF of the UPQC. The performance of the proposed control scheme of the UPQC is validated through simulations using MATLAB software with its Simulink and Power System Block set toolboxes.

A Basic Study on the Development of the Single-Phase Unified Poorer Quality Conditioner (단상용 통합형 전력품질 개선장치의 개발에 관한 기초연구)

  • 노대석;이현옥;오성철;최재석;차준민;김재언
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Recently, the increasing application of electronic equipments and information devices has heightened the interest in power qualify. The term power quality is applied to a wide range of electromagnetic phenomena on the power system and is also concentrated by all areas such as utilities, their customers and suppliers of load equipments. In engineering terms, power Qualify is expressed by voltage qualify because the power supply system can only control the quality of the voltage. Therefore, the standards in power quality area are devoted to keep the supply voltage within allowable limits. This paper deals with single-phase unified power quality conditioner (UPQC), which ai s at the integration of series-active and shunt-active filter. The series filter il used to compensate for the voltage distortions and the shunt filter is used to provide reactive power and counteract the harmonic current injected by the load. Also, the voltage of the DC link capacitor is controlled to a desired value by the shunt active filter. The validity of the proposed UPQC is demonstrated using both the MATLAB/SIMULINK simulation and the experimental device with DSP (TMS320C32).