• Title/Summary/Keyword: Shrinking core 모델

Search Result 20, Processing Time 0.025 seconds

A discussion on the application of particle reaction model for iron ore pellet induration process modeling (탄재를 포함한 산화철 펠릿 소성 공정 수치 모델의 입자 반응 모델 적용)

  • Ahn, Hyungjun;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.165-166
    • /
    • 2014
  • The application of particle reaction model in the packed bed process modeling is discussed for iron ore pellet induration process. Combustion of coke breeze in the pellet is estimated by using shrinking unreacted-core model and grain model in which the progress of chemical reaction is described in different concepts. Under the identical inlet gas and solid conditions, the calculation using shrinking core model showed deviated results in terms of temperature profile and conversion fraction, which may imply the significance of selecting proper particle reaction model in consideration of particle characteristics and process operation conditions.

  • PDF

A Study on the Particle Reaction Models for Iron Ore Pellet Induration Process Modeling (철광석 펠릿 소성 공정 모형의 입자 반응 모델 적용에 관한 연구)

  • Ahn, Hyungjun;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.325-326
    • /
    • 2015
  • Combustion of coke grains in a pellet used to be modeled using the shrinking core model in the previous indurator simulations. This leads to the discussions about its propriety due to the fundamental assumptions of the model inconsistent with the particle characteristics. The current study presents the grain model as an improvemen, and the differently used reaction models are compared. In addition, the simulations assuming changed particle conditions are conducted to display the effects of using the grain model.

  • PDF

A Kinetic Studies of Pyrolysis and Combustion of Sewage Sludge (하수 슬러지의 열분해 및 연소 Kinetics 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.47-53
    • /
    • 2014
  • Effective treatment and energy conversion technologies are necessary due to the ban of the dumping of organic waste including the sewage sludge. In this study, the kinetics of pyrolysis and combustion were derived in a TGA and thermobalance reactor, which is essential for thermal conversion of sewage sludge to energy. Three steps are shown for the pyrolysis in TGA and the different pre-exponential factors and activation energies are derived depending on the temperature range. Three models of gassolid reaction were applied to the reaction kinetics analysis for the combustion of sewage sludge char and shrinking core model was an appropriated model. Apparent activation energy and pre-exponential factor were evaluated and the effect of oxygen partial pressure was examined.

Depolymerization of waste Poy(butylene terephthalate) by saponification (비누화반응에 의한 폐 Poly(butylene terephthalate)의 해중합)

  • Yoo, Ji-Hwan;Na, Sang-Kwan;Hong, Wan-Hae;Kim, Jung-Gyu
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.124-133
    • /
    • 2002
  • Waste PBT powder was depolymerized by saponification under the mild temperature conditions($80{\sim}110^{\circ}C$) and atmospheric pressure. In depolymerization of PBT, sodium hydroxide was more effective than potassium hydroxide. The depolymerization increased with increasing reaction temperature and decreasing particle size. The reaction kinetics of depolymerization could be expressed by the shrinking unreacted core model without product layer, in which the surface reaction was a rate determining step. The activation energy was 98.1 KJ/mol. The recovery ratio of the TPA obtained from the depolymerized PBT particles of 85.1 and $105{\mu}m$ for 6 hours was about 95%.

Comparative Modeling of Low Temperature Char-CO2 Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration (이산화탄소 농도에 따른 드레이톤 탄의 저온 차-이산화탄소 가스화반응 모델링 비교)

  • Park, Ji Yun;Lee, Do Kyun;Hwang, Soon Cheol;Kim, Sang Kyum;Lee, Sang Heon;Yoon, Soo Kyung;Yoo, Ji Ho;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • We investigated the effects of the concentration of carbon dioxide on the char-$CO_2$ gasification reaction under isothermal conditions of $850^{\circ}C$ using the Drayton coal. Potassium carbonate was used to improve the low-temperature gasification reactivity. The enhancement of carbon dioxide concentration increased the gasification rate of char, while gasification rate reached a saturated value at the concentration of 70%. The best $CO_2$ concentration for gasification is determined to be 70%. We compared the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) of the gas-solid reaction models. The correlation coefficient values, by linear regression, of SCM are higher than that of VRM at low concentration. While the correlation coefficients values of VRM are higher than that of SCM at high concentration. The correlation coefficient values of MVRM are the highest than other models at all concentration.

Numerical Prediction for Fluidized Bed Chlorination Reaction of Ilmenite Ore (일메나이트광의 유동층 염화반응에 대한 수치적 예측)

  • Chung, Dong-Kyu;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Song, Duk-Yong
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • Numerical model that considered the shrinking core model and elutriation and degradation of particles was developed to predict selective chlorination of ilmenite and carbo-chlorination of $TiO_2$ in a two stage fluidized bed chlorination furnace. It is possible to analyze the fluidized bed chlorination reaction to be able to reflect particle distribution for mass balances and the chlorination reaction. The numerical model showed an accuracy with error less than 6% compared with fluidized bed experiments. The chlorination degree with particle size change was greater with a smaller particle size, and there was a 100 min difference to obtain a chlorination degree of 1 between $75{\mu}m$ and $275{\mu}m$. This was not shown to such a great extent with variation of temperature ($800{\sim}1000^{\circ}C$), and there was only a 10 min difference to obtain a chlorination degree of 0.9. In the first selective chlorination process, the mass reduction rate approached to the theoretical value of 0.4735 after 180 min, and chlorination changed the Fe component into $FeCl_2$ or $FeCl_3$ and showed nearly 1. In the second carbo-chlorination process, the chlorination degree of $TiO_2$ approached 0.98 and the mass fraction reached 0.02 with conversion into $TiCl_4$. In the first selective chlorination process, 98% of $TiO_2$ was produced at 180 min, and this was changed into 99% of $TiCl_4$ after an additional 90 min. Also the mass reduction rate of $TiO_2$ was reduced to 99% in the second continuous carbo-chlorination process.

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate (알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교)

  • Bungay, Vergel C.;Song, Byungho
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.

The Effect of Coal Particle Size on Char-$CO_{2}$ Gasification Reactivity by Gas Analysis (가스분석을 이용한 석탄 입자크기가 촤-$CO_{2}$ 가스화 반응성에 미치는 영향 연구)

  • Kim, Yong-Tack;Seo, Dong-Kyun;Hwang, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.372-380
    • /
    • 2011
  • Char gasification is affected by operating conditions such as reaction temperature, reactants gas partial pressure, total system pressure and particle size in addition to chemical composition and physical structure of char. The aim of the present work was to characterize the effect of coal particle size on $CO_{2}$ gasification of chars prepared from two different types of bituminous coals at different reaction temperatures(1,000-$1,400{^{\circ}C}$). Lab scale experiments were carried out at atmospheric pressure in a fixed reactor where heat was supplied into a sample of char particles. When a flow of $CO_{2}$(40 vol%) was delivered into the reactor, the char reacted with $CO_{2}$ and was transformed into CO. Carbon conversion of the char was measured using a real time gas analyzer having NDIR CO/$CO_{2}$ sensor. The results showed that the gasification reactivity increased as the particle size decreased for a given temperature. The sensitivity of the reactivity to particle size became higher as the temperature increases. The size effects became remarkably prominent at higher temperatures and became a little prominent for lower reactivity coal. The particle size and coal type also affected reaction models. The shrinking core model described better for lower reactivity coal, whereas the volume reaction model described better for higher reactivity coal.

Effect of Metal Oxide Additives on Hydrogen Production in the Steam-Iron Process (철-수증기 반응에 의한 수소생성에 미치는 금속산화물의 첨가효과)

  • Lee, Dae-Haeng;Moon, Hee;Park, Heung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1991
  • The production of hydrogen from steam by reduced iron with additives such as CuO, $In_2O_3$, $MoO_3$ and $WO_3$ has been kinetically investigated. It was shown that all additives have a promoting effect on reaction activity in the order of $$MoO_3{\gg}In_2O_3{\sim_=}WO_3{\sim_=}CuO$$. The shrinking core model was applied to predict the complete conversion time and the results were quite comparable with experimental values. The reaction was carried out in a fixed flow reactor packed with reduced iron with 1 wt % of additives under the conditions, $600-750^{\circ}C$, Ar flow rate of 1 L/min and steam partial pressure of 0.085 atm. The apparent activation energies were 14.2, 20.9, 21.3, 22.4 and 27.9 kJ/mol with $MoO_3$, $In_2O_3$, $WO_3$, CuO and without additive, respectively.

  • PDF

Leaching of copper and silver from ground mobile phone printed circuit boards using nitric acid (핸드폰 기판(基板)으로부터 구리와 은의 질산(窒酸) 침출(浸出) 연구(硏究))

  • Le, Long Hoang;Yoo, Kyong-Keun;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.48-55
    • /
    • 2008
  • Leaching of copper and silver from mobile phone PCBs(printed circuit boards) with nitric acid was performed to investigate the effects of nitric acid concentrations, leaching temperatures, agitation speeds, and pulp densities on the leaching behaviors of Cu and Ag. The leaching rate considerably increased with increasing acid concentration and temperature. The leaching ratios of Cu and Ag were found to be 96.4% and 96.5%, respectively, under the optimum condition; at $80^{\circ}C$ with 2mol/L $HNO_3$ and 120g/L in pulp density within 39minutes. The kinetic parameters were determined based on the shrinking core model with reaction control corresponding to small particles. The activation energies for the leaching of copper and silver were found to be 45.5kJ/mol and 60.5kJ/mol at $35{\sim}80^{\circ}C$ with 2mol/L $HNO_3$, respectively.