DOI QR코드

DOI QR Code

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate

알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교

  • Bungay, Vergel C. (Department of Chemical Engineering, Kunsan National University) ;
  • Song, Byungho (Department of Chemical Engineering, Kunsan National University)
  • Received : 2014.02.05
  • Accepted : 2014.03.06
  • Published : 2014.03.31

Abstract

Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.

저등급탄인 내몽골 갈탄의 촉매가스화반응을 수행하였다. 가스화반응은 열중량분석기(TGA)에서 반응온도 $600{\sim}900^{\circ}C$ 범위에서 이산화탄소를 반응가스로 하여 실행하였다. 공정설계에 필수적인 반응 인자들을 도출하기 위하여 세가지의 기-고체 반응모델을 사용하였으며 그 모델들이 가스화반응의 거동을 예측하는 능력을 비교하였다. 사용된 모델 중에서 modified volumetric reaction model이 촉매, 비촉매 가스화반응의 거동을 가장 잘 묘사하였다. 이론적 모델인 homogeneous model과 shrinking-core model은 비촉매반응과 $FeSO_4$를 촉매로 한 반응을 비교적 잘 표현하였다. 알칼리금속 촉매를 사용할 경우, 촉매의 활성은 $600^{\circ}C$ 낮은 온도에서 가장 크게 나타났으며 온도가 $700^{\circ}C$로 증가하면 촉매활성이 약 50% 감소하는 것이 관찰되었다. 온도가 더 증가하여 $800^{\circ}C$ 이상에서는 촉매활성은 일정해졌다. 본 연구에서 촉매의 활성 순서는 다음과 같이 얻어졌다: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.

Keywords

References

  1. Li, F., Huang, J., Fang, Y. and Wang Y.: "Formation mechanism of slag during fluid-bed gasification of lignite", Energy Fuels, 25, 273-280 (2011) https://doi.org/10.1021/ef101268e
  2. Irfan, M.F., Usman, M.R. and Kakusabe, K.: "Coal gasification in $CO_2$ atmosphere and its kinetics since 1948: A brief review", Energy, 36, 12-40 (2011) https://doi.org/10.1016/j.energy.2010.10.034
  3. Ye, D.P., Agnew, J.B. and Zhang, D.K.: "Gasification of South Australian low-rank coal with $CO_2$ and steam: kinetics and reactivity studies", Fuel, 77(11), 1209-1219 (1998) https://doi.org/10.1016/S0016-2361(98)00014-3
  4. Beamish, B.B., Shaw, K.J., Rodgers, K.A. and Newman, J.: "Thermogravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal", Fuel Process Technol, 53, 243-253 (1998) https://doi.org/10.1016/S0378-3820(97)00073-8
  5. Akyurtlu, J.F. and Akyurtlu, A.: "Catalytic gasification of Pittsburgh coal char by potassium sulphate and ferrous sulfate mixtures:, Fuel Process Technol, 43, 71-86 (1995) https://doi.org/10.1016/0378-3820(94)00127-F
  6. Kim, S.K., Park, C. Y., Park, J.Y., Lee, S., Rhu, J.H., Han, M.H., Yoon, S.K. and Rhee, Y.W.: "The kinetic study of catalytic low-rank coal gasification under $CO_2$ atmosphere using MVRM", J. Ind. Eng. Chem., 20, 356-361 (2014) https://doi.org/10.1016/j.jiec.2013.03.027
  7. Wei, X., Huang, J., Liu, T., Fang, Y. and Wang, Y.: "Transformation of alkali metals during pyrolysis and gasification of a lignite", Energy Fuels, 22, 1840-1844 (2008) https://doi.org/10.1021/ef7007858
  8. Timpe R.C., Kulas, R.W., Hauserman, W.B., Sharma, R.K., Olson, E.S. and Wilson, W.G.: "Catalytic gasification of coal for the production of fuel cell feedstock", Int. J. Hydrogen Energ., 22, 487-92 (1997)
  9. Lee, W.J. and Kim, S.D.: "Catalytic activity of alkali and transition metal salt mixtures for steam-char gasification", Fuel, 74(9), 1387-1393 (1995) https://doi.org/10.1016/0016-2361(95)00081-F
  10. Li, S. and Cheng, Y.: "Catalytic gasification of gas-coal char in $CO_2$", Fuel, 74(3), 456-458(1995) https://doi.org/10.1016/0016-2361(95)93482-S
  11. Molina, A. and Mondragon, F.: "Reactivity of coal gasification with steam and $CO_2$", Fuel, 77(15), 1831-1839 (1998) https://doi.org/10.1016/S0016-2361(98)00123-9
  12. Kasaoka, S., Sakata, Y. and Tong C.: "Kinetic evaluation of the reactivity of various coal chars for gasification with carbon dioxide in comparison with steam", Int. Chem. Eng., 25, 160-175 (1985)
  13. Song, B.H. and Kim, S.D.: "Catalytic activity of alkali and iron salt mixtures for steam-char gasification", Fuel, 72(6), 797-803 (1993) https://doi.org/10.1016/0016-2361(93)90083-E
  14. Yang, Y. and Watkinson, A.P.: "Gasification reactivity of some Western Canadian coals", Fuel, 73(11), 1786-1791 (1994) https://doi.org/10.1016/0016-2361(94)90169-4
  15. Zhu, X., Song, B., Kim, D., Kang, S., Lee, S., Jeon, S., Choi, Y., Byoun, Y., Moon, W., Lee, J., Kim, H., Lee, H. and Shim, J.: "Kinetic study on catalytic gasification of a modified sludge fuel", Particuology, 6, 258-264 (2008) https://doi.org/10.1016/j.partic.2008.04.003
  16. Kim, S.K., Park, C. Y., Park, J.Y., Lee, S., Rhu, J.H., Han, M.H., Yoon, S.K. and Rhee, Y.W.: "The kinetic study of catalytic low-rank coal gasification under $CO_2$ atmosphere using MVRM", J. Ind. Eng. Chem., 20, 356-361 (2014) https://doi.org/10.1016/j.jiec.2013.03.027
  17. Wu, Y., Wu, S. and Gao, J.: "A study on the applicability of kinetic models for Shenfu coal char gasification with $CO_2$ at elevated temperatures", Energies, 2, 545-555 (2009) https://doi.org/10.3390/en20300545
  18. Wood, B.J. and Sancier, K.M.: "Catalytic gasification of coal char", Catal. Rev. Sci. Eng., 26, 233-279 (1984) https://doi.org/10.1080/01614948408078065
  19. Wang, J., Sakanishi, K., Saito, I., Takarada, T. and Morishita, K.: "High-yield hydrogen production by steam gasification of HyperCoal (ash-free coal Extract) with potassium carbonate: comparison with raw coal", Energy Fuels, 19, 2114-2120 (2005) https://doi.org/10.1021/ef040089k
  20. Sharma, A., Takanohashi, T., Morishita, K., Takarada, T. and Saito, I.: "Low temperature catalytic steam gasification of HyperCoal to produce H2 and synthesis gas", Fuel, 87, 491-497 (2008) https://doi.org/10.1016/j.fuel.2007.04.015
  21. Formella, K., Leonhardt, P., Sulimma, A., van Heek, K.H. and J?ntgen, H.: "Interaction of mineral matter in coal with potassium during gasification", Fuel, 65, 1470-1472 (1986) https://doi.org/10.1016/0016-2361(86)90126-2
  22. Zhang, Y., Ashizawa, M., Kajitani, S. and Hara, S.: "A new approach to catalytic coal gasification: The recovery and reuse of calcium using biomass derived crude vinegars", Fuel, 89, 417-422 (2010) https://doi.org/10.1016/j.fuel.2009.07.009
  23. Kuhn, L. and Plogmann, H.: "Reaction of catalysts with mineral matter during coal gasification", Fuel, 62, 205-208 (1983) https://doi.org/10.1016/0016-2361(83)90199-0
  24. Adjorlolo, A. A. and Rao, Y.K.: "Effect of potassium and sodium carbonate catalysts on the rate of gasification of metallurgical coke", Carbon, 22, 173-176 (1984) https://doi.org/10.1016/0008-6223(84)90207-0
  25. McKee, D. W.: "Gasification of graphite in carbon dioxide and water vapor - The Catalytic Effects of Alkali Metal Salts", Carbon, 20, 59-66 (1982) https://doi.org/10.1016/0008-6223(82)90075-6
  26. McKee, D. W. and Chatterji, D.: "The catalytic reaction of graphite with water vapor", Carbon, 16, 53-57 (1978) https://doi.org/10.1016/0008-6223(78)90116-1