• Title/Summary/Keyword: Shortest Path Algorithm

Search Result 438, Processing Time 0.026 seconds

A Variational Inequality Model of Traffic Assignment By Considering Directional Delays Without Network Expansion (네트웍의 확장없이 방향별 지체를 고려하는 통행배정모형의 개발)

  • SHIN, Seongil;CHOI, Keechoo;KIM, Jeong Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.77-90
    • /
    • 2002
  • Network expansion has been an inevitable method for most traffic equilibrium assignments to consider intersection movements such as intersection delays. The drawback of network expansion is that because it dramatically increases network sizes to emulate possible directional movements as corresponding links, not only is complexities for building network amplified, but computational performance is shrunk. This paper Proposes a new variational inequality formulation for a user-optimal traffic equilibrium assignment model to explicitly consider directional delays without building expanded network structures. In the formulation, directional delay functions are directly embedded into the objective function, thus any modification of networks is not required. By applying a vine-based shortest Path algorithm into the diagonalization algorithm to solve the problem, it is additionally demonstrated that various loop-related movements such as U-Turn, P-Turn, etc., which are frequently witnessed near urban intersections, can also be imitated by blocking some turning movements of intersections. The proposed formulation expects to augment computational performance through reduction of network-building complexities.

Development of Integrated Accessibility Measurement Algorithm for the Seoul Metropolitan Public Transportation System (서울 대도시권 대중교통체계의 통합 시간거리 접근성 산출 알고리즘 개발)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • This study proposes an integrated accessibility measurement algorithm, which is applied to the Seoul Metropolitan public transportation system consisting of bus and subway networks, and analyzes the result. We construct a public transportation network graph linking bus-subway networks and take the time distance as the link weight in the graph. We develop a time-distance algorithm to measure the time distance between each pair of transit stations based on the T-card transaction database. The average travel time between nodes has been computed via the shortest-path algorithm applied to the time-distance matrix, which is obtained from the average speed of each transit route in the T-card transaction database. Here the walking time between nodes is also taken into account if walking is involved. The integrated time-distance accessibility of each node in the Seoul Metropolitan public transportation system has been computed from the T-card data of 2013. We make a comparison between the results and those of the bus system and of the subway system, and analyze the spatial patterns. This study is the first attempt to measure the integrated time-distance accessibility for the Seoul Metropolitan public transportation system consisting of 16,277 nodes with 600 bus routes and 16 subway lines.

K-th Path Search Algorithms with the Link Label Correcting (링크표지갱신 다수경로탐색 알고리즘)

  • Lee, Mee-Young;Baik, Nam-Cheol;Choi, Dae-Soon;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.131-143
    • /
    • 2004
  • Given a path represented by a sequence of link numbers in a graph, the vine is differentiated from the loop in a sense that any link number can be visited in the path no more than once, while more than once in the loop. The vine provides a proper idea on complicated travel patterns such as U-turn and P-turn witnessed near intersections in urban transportation networks. Application of the link label method(LLM) to the shortest Path algorithms(SPA) enables to take into account these vine travel features. This study aims at expanding the LLM to a K-th path search algorithm (KPSA), which adopts the node-based-label correcting method to find a group of K number of paths. The paths including the vine type of travels are conceptualized as drivers reasonable route choice behaviors(RRCB) based on non-repetition of the same link in the paths, and the link-label-based MPSA is proposed on the basis of the RRCB. The small-scaled network test shows that the algorithm sequence works correctly producing multiple paths satisfying the RRCB. The large-scaled network study detects the solution degeneration (SD) problem in case the number of paths (K) is not sufficient enough, and the (K-1) dimension algorithm is developed to prevent the SD from the 1st path of each link, so that it may be applied as reasonable alternative route information tool, an important requirement of which is if it can generate small number of distinct alternative paths.

Increasing the SLAM performance by integrating the grid-topology based hybrid map and the adaptive control method (격자위상혼합지도방식과 적응제어 알고리즘을 이용한 SLAM 성능 향상)

  • Kim, Soo-Hyun;Yang, Tae-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1605-1614
    • /
    • 2009
  • The technique of simultaneous localization and mapping is the most important research topic in mobile robotics. In the process of building a map in its available memory, the robot memorizes environmental information on the plane of grid or topology. Several approaches about this technique have been presented so far, but most of them use mapping technique as either grid-based map or topology-based map. In this paper we propose a frame of solving the SLAM problem of linking map covering, map building, localizing, path finding and obstacle avoiding in an automatic way. Some algorithms integrating grid and topology map are considered and this make the SLAM performance faster and more stable. The proposed scheme uses an occupancy grid map in representing the environment and then formulate topological information in path finding by A${\ast}$ algorithm. The mapping process is shown and the shortest path is decided on grid based map. Then topological information such as direction, distance is calculated on simulator program then transmitted to robot hardware devices. The localization process and the dynamic obstacle avoidance can be accomplished by topological information on grid map. While mapping and moving, pose of the robot is adjusted for correct localization by implementing additional pixel based image layer and tracking some features. A laser range finer and electronic compass systems are implemented on the mobile robot and DC geared motor wheels are individually controlled by the adaptive PD control method. Simulations and experimental results show its performance and efficiency of the proposed scheme are increased.

Forecasting of Traffic Situation using Internet (인터넷을 이용한 교통상황예보)

  • Hong, You-Sik;Choi, Myeong-Bok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.300-309
    • /
    • 2003
  • The Japanese developed the first Car navigation system in 1981 with the advent of Honda, which was known as the car inertial navigation system. Now days, It is possible to search the shortest route to and from places and arrival time using the internet via cell phone to the driver based on GIS and GPS. However, even with a good navigation system, it losses the shortest route when there is an average speed of the vehicle being between S-15 kilometers. Therefore, in order to improve the vehicle waiting time and average vehicle speed, we are suggesting an optimal green time algorithm using fuzzy adaptive control, where there are different traffic intersection lengths, and lanes. In this paper, to be able to assist the driver and forecast the optimal traffic information with regards to the road conditions; dangerous roads, construction work and estimation of arrival time at their destination using internet.

Real-time Intelligent Exit Path Indicator Using BLE Beacon Enabled Emergency Exit Sign Controller

  • Jung, Joonseok;Kwon, Jongman;Jung, Soonho;Lee, Minwoo;Mariappan, Vinayagam;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • Emergency lights and exit signs are an indispensable part of safety precautions for effective evacuation in case of emergency in public buildings. These emergency sign indicates safe escape routes and emergency doors, using an internationally recognizable sign. However visibility of those signs drops drastically in case of emergency situations like fire smoke, etc. and loss of visibility causes serious problems for safety evacuation. This paper propose a novel emergency light and exit sign built-in with Bluetooth Low Energy (BLE) Beacon to assist the emergency self-guiding evacuation using devices for crisis and emergency management to avoid panic condition inside the buildings. In this approach, the emergency light and exit sign with the BLE beacons deployed in the indoor environments and the smart devices detect their indoor positions, direction to move, and next exit sign position from beacon messages and interact with map server in the Internet / Intranet over the available LTE and/or Wi-Fi network connectivity. The map server generate an optimal emergency exit path according to the nearest emergency exit based on a novel graph generation method for less route computation for each smart device. All emergency exit path data interfaces among three system components, the emergency exit signs, map server, and smart devices, have been defined for modular implementation of our emergency evacuation system. The proposed exit sign experimental system has been deployed and evaluated in real-time building environment thoroughly and gives a good evidence that the modular design of the proposed exit sign system and a novel approach to compute emergency exit path route based on the BLE beacon message, map server, and smart devices is competitive and viable.

A Heuristic Algorithm for Power Plant Coal Supply Planning Problems (화력발전소 원료 공급계획을 위한 휴리스틱 알고리즘)

  • Kim, Chul-Yeon;Moon, Hyung-Gen;Choi, Gyung-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.132-143
    • /
    • 2011
  • This paper deals with a coal supply planning problem for power plants. We propose a mathematical optimization model to make decisions for coal pile sections, movement of reclaimers, and operation time of conveyor belts. The objective of the proposed model is to minimize the total operation time of conveyor belts and total movement time of reclaimers. The algorithm firstly selects a pile section by considering both the location of reclaimers and the stock amount on that pile section. And then the shortest path from the selected pile section has to be put into the operation schedule and check whether the total operation time is satisfied. Then finally the new schedule is updated. To this end, we have tested the proposed algorithm comparing with the general standard optimization package for the simplified problem SCSPP. From the numerous test runs for comparing with the existing coal supply scheduling methods, We see that the proposed model may improve the coal supply operation by reducing significant coal supply costs.

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

Integer Programming Approach to the Heterogeneous Fleet Vehicle Routing Problem (복수 차량 유형에 대한 차량경로문제의 정수계획 해법)

  • Choi Eunjeong;Lee Tae Han;Park Sungsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.179-184
    • /
    • 2002
  • We consider the heterogeneous fleet vehicle routing problem (HVRP), a variant of the classical vehicle routing problem (VRP). The HVRP differs from the classical VRP in that it deals with a heterogeneous fleet of vehicles having various capacities, fixed costs, and variables costs. Therefore the HVRP is to find the fleet composition and a set of routes with minimum total cost. We give an integer programming formulation of the problem and propose an algorithm to solve it. Although the formulation has exponentially many variables, we can efficiently solve the linear programming relaxation of it by using the column generation technique. To generate profitable columns we solve a shortest path problem with capacity constraints using dynamic programming. After solving the linear programming relaxation, we apply a branch-and-bound procedure. We test the proposed algorithm on a set of benchmark instances. Test results show that the algorithm gives best-known solutions to almost all instances.

  • PDF

The Development of a Tour Route Guidance System Using a Traveling Salesman Problem Algorithm (TSP 알고리듬을 이용한 관광노선 안내 시스템 개발)

  • 정영아;구자용
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.275-289
    • /
    • 2003
  • This study focused on offering a helpful information for the touring. To develop a tour route guidance tool, it is needed to use a GIS function, which can suggest a possible shortest path based on time and distance. A Traveling salesman problem algorithm, which was developed to solve multi destination problem in network analysis, was used to implement a tour guidance system. This system was developed using ArcObjects programming components within ArcGIS 8.3. Jeju city was selected for the case study to apply the tool and to test the effectiveness of it. This study demonstrated that this tool was considerably effective for finding a probable optimum tour path in the following aspects. First, it can help tourists to select several attractions from numerous tour sites in an area given limited time. Second, tourist can manage time efficiently by organizing their tour courses on the basis of the tool. Third, tourists can reduce the uncertainties that may happen under unexpected situations in unfamiliar places by obtaining specific spatial information using the tool. Fourth, the Graphic User Interface of the tool can be easily used to obtain visual information of spatial data.

  • PDF