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Abstract 
 

Network virtualization provides an effective way to overcome the Internet ossification 

problem. As one of the main challenges in network virtualization, virtual network embedding 

refers to mapping multiple virtual networks onto a shared substrate network. However, 

existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply 

by the product of different resource attributes, which would result in an unbalanced 

embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be 

mapped onto may restrict the ability of the substrate network to accept additional virtual 

network requests, and lead to low utilization rate of resource. In this paper, we introduce and 

extend five node attributes that quantify the embedding potential of the nodes from both the 

local and global views, and adopt the technique for order preference by similarity ideal 

solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase 

the utilization rate of resource. Moreover, we propose a novel two-stage virtual network 

embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the 

node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation 

results show that the new algorithm significantly increases the long-term average revenue, the 

long-term revenue to cost ratio and the acceptance ratio. 
 

 
Keywords: Network virtualization, virtual network embedding, node attribute, rank, 

TOPSIS 
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1. Introduction 

The Internet has been playing a vital role in modern society over the years. However, due to 

the existence of multiple Internet service providers (ISPs) with conflicting purposes and 

policies, new network services and innovative technologies are hard to deploy in current 

Internet, and even the essential modifications to the architecture of the Internet meet resistance, 

which are known as the Internet ossification problem [1]. To overcome this impasse, network 

virtualization has been put forward as a fundamental ingredient of the future Internet paradigm, 

which allows multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate 

network (SN) [2-4]. In a network virtualization environment, traditional ISPs are decoupled 

into two independent entities: infrastructure providers (InPs) and service providers (SPs). InPs 

are responsible for managing the physical SNs, while SPs are responsible for creating VNs by 

leasing resources from InPs and offering customized end-to-end services to users. Such an 

environment will facilitate the innovation of new network architectures free of the inherent 

limitations of the current Internet. 

Since SNs have limited network resources, in order to increase the revenue of InPs, it is 

crucial to efficiently assign substrate resources to virtual network request (VNR) while 

satisfying the constraints of virtual nodes and links, which is known as the virtual network 

embedding problem (VNE) [5]. As the main challenge in network virtualization, the VNE 

problem is NP-hard [6] and numerous algorithms have been proposed to solve it [7-20]. 

Generally, The VNE consists of two mapping stages: the node mapping where virtual nodes 

are mapped onto substrate nodes in a one-to-one manner while satisfying the constraints of 

nodes’ resources, and the link mapping where virtual links are mapped onto loop-free substrate 

paths while satisfying the constraints of links’ resources. Moreover, the former stage is more 

important as it is the basis of the latter one. 

Most existing algorithms adopt greedy strategy to map the virtual nodes requiring more 

resources onto the nodes in the substrate network with more available resources in the node 

mapping stage [9-16]. The node ranking method is the key problem in the greedy node 

mapping. It evaluates the embedding potential of each node in the VNs and the SN, and ranks 

them in descending order. Then, virtual nodes are mapped onto substrate nodes according to 

their ranks. There are many factors that would affect the evaluation. However, previous 

algorithms evaluate the embedding potential of nodes simply by the product of their CPU 

resource, the total bandwidth resource of their adjacent links and their topological attributes in 

the network [13-16], which would result in an imbalance of these factors, and eventually lead 

to decreased utilization rate of resource of the SN. Moreover, the hops of substrate paths that 

the virtual links mapped onto should also be considered in the node mapping stage. Otherwise, 

two adjacent virtual nodes connected directly by a virtual link in the VN may be mapped onto 

the substrate nodes that far away from each other in the SN, resulting in the waste of 

bandwidth resources and restricting the ability of the SN to accept additional VNRs. 

In this paper, we propose a novel VNE algorithm (TOP-VNE) with multi-attribute node 

ranking, which can efficiently solve the above problems. Five node attributes are introduced 

and redefined to measure the embedding potential of nodes for the VNE problem: “resource 

capacity”, “communication capacity”, “degree”, “closeness”, “correlation quality”, where 

resource capacity and communication capacity reflect the local resources of nodes, degree and 

closeness reflect the local and global topological attributes of nodes in the network, 

respectively, and correlation quality considers the hops of substrate paths. Then we regard 
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each node in the VN or SN as a solution, and each node attribute as a solution’s evaluation 

criterion of importance, where the importance refers to the relative embedding potential of a 

node. In such a way, the evaluation of node importance is transformed into a multi-attribute 

decision making problem, and we adopt TOPSIS to solve it, resulting in a balanced importance 

evaluation among different attributes. The more important a node is in the network, the higher 

embedding potential it has. Based on the node ranks according to their importance, TOP-VNE 

gives a priority to mapping virtual nodes with high ranks onto substrate nodes with high ranks, 

and uses a shortest-path based algorithm to map virtual links. TOP-VNE combines the local 

network resource and multiple topological attributes together, and considers the balance 

among them, which enables better coordination between the two mapping stages and achieves 

larger utilization rate of resource. 

In summary, the main contributions of this paper can be summarized as follows: (1) We 

introduce and extend five attributes of nodes, which take the local resources, different 

topological attributes and the hops of substrate paths into consideration, to measure their 

embedding potential for the VNE. (2) Base on the aforementioned five node attributes, we 

devise a multi-attribute node raking algorithm (TOP-MANR), which adopts TOPSIS to 

evaluate the importance of nodes and ranks them accordingly. TOP-MANR is leveraged in the 

VNE to solve the problem of the imbalance of different node attributes when ranking nodes in 

the VNs and the SN. (3) We propose a novel heuristic VNE algorithm (TOP-VNE), which 

consists of the TOP-MANR-based node mapping stage and the shortest path-based link 

mapping stage, (4) and extensive simulations are conducted to demonstrate the effectiveness 

and efficiency of our proposed VNE algorithm. 

The rest of this paper is organized as follows. In section 2, we discuss the related work. 

Section 3 presents the network model and defines the VNE problem. Section 4 describes the 

multi-attribute node ranking algorithm. Our novel VNE algorithm is proposed in section 5. In 

section 6, we evaluate the proposed algorithm through extensive simulations. Section 7 

concludes the paper. 

2. Related Work 

The VNE problem has been shown to be NP-hard due to the multiple constraints of nodes and 

links. Therefore, optimal results can only be achieved for small problem instances. Previous 

work on the VNE problem mainly relied on heuristic algorithms to obtain relative optimal 

solutions. Generally, the existing VNE algorithms can be divided into two categories: the 

one-stage embedding algorithm that the node mapping and the link mapping are completed at 

the same time, and the two-stage embedding algorithm that the node mapping is performed 

first and followed by the link mapping. 

Cheng et al. [11] proposed a one-stage embedding algorithm through topology-aware node 

ranking. This algorithm considers the resources and topological attributes of nodes together, 

and applies the Markov Random Walk (RW) model to rank them. Based on breadth-first 

search, virtual nodes and links are mapped simultaneously according to the node ranks. Lu et 

al. [17] presented a novel VNE algorithm based on integer programming. They first built an 

augmented substrate graph by connecting each virtual node to its candidate substrate nodes, 

and then formulated the VNE problem as an integer program. The VNE problem is solved in 

one stage by GLPK and can obtain optimal results. However, this algorithm is not efficient for 

VNRs of complex topologies. 

Most previous research focused on the two-stage embedding algorithms. Some of them 

mapped the virtual networks in two independent stages [9, 10]: the greedy node mapping 
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which maps the virtual nodes with high resource demands onto the substrate nodes with large 

residual resources, and the shortest path-based link mapping which maps the virtual links onto 

the shortest substrate paths to reduce the cost. However, preselecting node mapping without 

taking its relation to the link mapping into account will restrict the solution space and lead to 

poor performance. 

Therefore, recent works proposed a new type of two-stage VNE algorithm, which 

coordinates two mapping stages through considering the link mapping constraints in the node 

mapping stage. Chowdhury et al. [18] formulated the VNE problem as a mixed integer 

program through substrate network augmentation, and devised two online VNE algorithms by 

using deterministic and randomized rounding techniques, which achieve a better coordination 

between the two mapping stages. Wang et al. [13] introduced network centrality into the VNE 

problem and proposed two novel VNE algorithms based on closeness centrality, which 

enhances the collaboration of the two mapping stages. Cui et al. [14] considered the adjacent 

degree of virtual nodes and proposed a new algorithm based on maximum convergence-degree, 

which ensures the virtual nodes and links gather together after the embedding. Gong et al. [19] 

took the resources of the entire network into consideration, and formulated a novel metric 

called GRC to measure the embedding potential of substrate nodes. Based on this metric, they 

proposed a coordinated VNE algorithm, which maps virtual nodes in a greedy load-balance 

manner and adopts shortest path-based algorithm to map virtual links. Ding et al. [15] 

introduced the betweenness centrality into the VNE problem. They proposed an embedding 

algorithm based on real-time topological attributes, which maps virtual nodes according to the 

node ranking results and uses k-shortest path algorithm to map virtual links. Liao et al. [16] 

considered the topological attributes of the network by using multiple characteristics, and rank 

the nodes in the VN and SN by the product of local resource and these characteristics. Base on 

the node ranks, three topology-aware VNE algorithms were proposed, which leverage the 

respective advantages of different characteristics. However, the aforementioned algorithms 

either typically only considered single topological attribute, or might lead to the imbalance of 

different resource attributes when evaluating the resource of nodes, which will result in 

decreased utilization rate of substrate resource and low revenues of InPs. 

Our work differs from the existing algorithms in three aspects. First, we consider multiple 

node attributes together and redefine them for the VNE problem with dynamic states of nodes 

and links, which reflect the real-time resources of nodes and topological attributes of networks 

from both the local and global views, respectively. These attributes are leveraged in the node 

mapping stage and lead to better coordination between the node and link mappings. Second, 

we take the hops of the substrate paths that virtual links are mapped onto into consideration in 

the node mapping stage, which can reduce the unnecessary consumption of link bandwidth 

and increase the utilization rate of substrate resource. Third, we apply TOPSIS to evaluate the 

importance of nodes based on multiple node attributes, aiming at balancing these attributes 

when ranking the nodes in the VN and SN. Different from previous work that ranks the nodes 

simply by the product of different node attributes [13-16], our work mends this gap. 

3. Problem Statement 

In this section, we first describe the network model and the VNE problem. Then we present the 

objectives of virtual network embedding. 

 

3.1 Network model 
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The substrate network is modeled as a weighted undirected graph ( , )S S SG N L , where SN  

and 
SL  refer to the set of substrate nodes and links, respectively. For each substrate node 

s Sn N , we consider the typical CPU as its attribute, and ( )sCPU n  denotes the available CPU 

resource that the substrate node 
sn  can provide. For each substrate link Ssl L , we consider 

the bandwidth as its attribute, and ( )sBW l  denotes the available bandwidth resource that the 

substrate link 
sl  can provide. An example of substrate network is presented in Fig. 1, where 

the numbers in rectangles next to the nodes represent the amount of available CPU resources 

and the numbers next to the edges represent the amount of available bandwidth resources. 

Moreover, we use SP  to denote the set of loop-free substrate paths in the substrate network, 

and for each substrate path Sp P , the available bandwidth is the minimum bandwidth that the 

substrate links in p  can provide. 

Similarly, we model the virtual network request as a weighted undirected graph 

 ,V V VG N L , where 
VN  and VL  refer to the set of virtual nodes and links, respectively. The 

required CPU resource of each virtual node v Vn N  is denoted by ( )vCPU n , and the required 

bandwidth resource of each virtual link v Vl L  is denoted by ( )vBW l . Two VNRs with node 

and link constraints are presented in Fig. 1, where the numbers in rectangles and the numbers 

next to the virtual links represent the required CPU and bandwidth resources, respectively. 

3.2 Virtual network embedding problem 

The VNE problem is defined as a mapping M from 
VG  to a subset of 

 SG , such that the 

constraints of nodes and links in the VNR are satisfied, which can be denoted by 
* *: ( , ), ,V S S

n l

S SM G N P R R , where *

S SN N  and *

S SP P , n

SR  and l

SR  represent the resources 

of substrate nodes and links that allocated to the VNR, respectively. 
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Fig. 1. Example of VNE 

 

The common VNE process, as shown in Fig. 1, consists of a node mapping stage and a link 
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mapping stage. We denote the node mapping stage and the link mapping stage by 
*: ( ), ( ),V

n

N

n

SV SM N C N R  and *: , ) ( ( , )l

L V

l

SV SM L C P R , respectively, where n

VC  and l

VC  

represent the required node resources and link resources, respectively. A solution of VNE for 

VNR1 and VNR2 is illustrated in Fig. 1. 

3.3 Objectives 

In order to reveal the long-term effects of the virtual network embedding, this paper considers 

the long-term average revenue, the long-term revenue to cost ratio (R/C) and the VNR 

acceptance ratio as the embedding objectives. 

Similar to the previous work [9, 10, 11, 18], the revenue of accepting a VNR at time t refers 

to the total resources it demands, which can be formulated as follows:  

( , ) ( ) ( )
v vV V

v

n N l

v

L

R VNR t CPU n BW l
 

                                         (1) 

where   is a relative weight to balance the revenue between CPU and bandwidth. 

The cost of accepting a VNR at time t is the total substrate resources allocated to the VNR, 

which can be formulated as follows:  

( , ) ( ) ( ) ( )
v vV V

v

n N l L

v vC VNR t CPU n BW l HOP l
 

                                   (2) 

where ( )vHOP l  is the number of hops in the substrate path that the virtual link 
vl  mapped onto, 

and   is a relative weight to balance the cost between CPU and bandwidth. 

Therefore, the long-term average revenue R is defined as:  

0

1
lim ( , )

T

tT
R R VNR t

T 
                                                     (3) 

The long-term average cost C is defined as:  

0

1
lim ( , )

T

tT
C C VNR t

T 
                                                     (4) 

The long-term revenue to cost ratio R/C is defined as:  

0

0

( , )
/ lim

( , )

T

t

TT

t

R VNR t
R C

C VNR t











                                                 (5) 

where we can see that the R/C refers to the resource utilization rate of the SN. The larger the 

R/C is, the higher the utilization rate of substrate resource is, and thus the VNE algorithm is 

more efficient. 

The VNR acceptance ratio is defined as the number of VNRs successfully accepted by the 

SN to the number of total arrival VNRs, which can be formulated as follows:  
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0

0

lim

T

suct

accept TT

sumt

VNR

VNR
 









                                                  (6) 

where 
sucVNR  represents the number of VNRs successfully accepted by the SN and 

sumVNR  

represents the total arrival VNRs. We can see that the higher the acceptance ratio is, the more 

VNRs are mapped successfully in a certain period of time, and thus InPs can obtain larger 

revenues. 

4. Multi-attribute Node Ranking 

4.1 Motivations 

As the basis of node mapping, the node ranking is crucial to the performance of VNE 

algorithms. It evaluates the embedding potential of each node in the network, so as to 

correspondingly map them one after another. Previous work in [10] ranks nodes by the product 

of the CPU resources and the total bandwidth resources of their adjacent links, which can be 

formulated by Eq. (7), and many VNE algorithms later have adopted such node ranking 

method [11, 12]. 

( )

( ) ( ) ( )
l L n

H n CPU n BW l


                                                   (7) 

where ( )L n  is the set of all adjacent links of node n . 

However, such node ranking method has the following disadvantages.  

First, it only considers the local resources of nodes and ignores their topological attributes 

that may pose great effect on the performance of VNE, which can’t reflect the real embedding 

potential of nodes. For example, as shown in Fig. 2(a), where the numbers in rectangles next 

to the nodes represent CPU resources and the numbers next to the edges represent bandwidth 

resources. Node A and node E have the same available local resources as 

60 (30 30 30) 5400    . However, the CPU resources of the neighbor nodes of node E are 

more than those of node A, and the embedding potential of node E should be larger than that of 

node A. 

Second, such method will lead to the imbalance of different node attributes, which will in 

turn cause the obtained results to be not relatively good in all the node attributes [20]. For 

example, as shown in Fig. 2(b), (A)H  is equal to (B)H , but we prefer substrate node B to 

node A when mapping a virtual node C requiring 20 units of CPU resource. Because node B 

have more adjacent bandwidth resources, and mapping the virtual node C onto B will have a 

higher chance to achieve a successful link mapping and increase the utilization rate of 

resource. 

Although the former disadvantage can be overcome by considering additional topological 

attributes in the node mapping stage [13-16], the latter one has yet been addressed properly. 

Network centrality is an important topological attribute, which has been widely used in 

mining the important nodes in social network analysis. Generally, the closer a node is to the 

network center, the more important it is. The common centrality criterions in network analysis 

are degree and closeness, which reflect different topological attributes of nodes and measure 

the relative importance of nodes from different aspects. Specially, the degree centrality reflects 
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the local importance of a node, and the closeness centrality focuses on the global importance 

of a node based on the shortest path. 
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Fig. 2. Motivational example 

In this section, we introduce the degree and closeness centralities into the VNE problem to 

measure the importance of nodes in the VN and SN. Besides, we also take the resource 

capacity, communication capacity, and correlation quality as the evaluation criterions of node 

importance for the VNE problem, where the importance refers to the relative embedding 

potential of a node. After defining and analyzing the above criterions, we propose a novel node 

ranking algorithm (TOP-MANR), which ranks the nodes in the VN and SN according to their 

importance measured by TOPSIS [21]. 

4.2 Node importance analysis 

Different definitions of network centralities will lead to different node ranks. Since the VNs 

and the SN in the VNE problem are weighted networks, and the state of nodes and links are 

changed dynamically, rather than simple graph theory, we redefine and extend the degree and 

closeness centralities to a new format for the VNE problem in this subsection. Besides, we 

define resource capacity, communication capacity, and correlation quality as the evaluation 

criterions, which measure the relative importance of nodes from different aspects. 

 

Definition 1 (Resource Capacity, RC)  The resource capacity of node 
in  is defined as 

follows:  
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( )

( )

( )
( ) ( ) ( )

( )
j i

jk

ij

i i

n Nb n jk

n Nb

j

n

BW l
RC n CPU n CPU n

BW l



  


                              (8) 

where ( )iNb n  denotes the set of the neighbor nodes that directly connect the node 
in  by a link. 

If 
Vin N , ( )iCPU n  denotes its required CPU resources, ( )ijBW l  denotes the required 

bandwidth resources of virtual link ijl . If 
Sin N , ( )iCPU n  refers to its available CPU 

resources, ( )ijBW l  refers to the available bandwidth resources of substrate link ijl . 

As shown in Fig. 2(a), node E is a more important node because the neighbor nodes of node 

E, namely, F, G, H, have more resources than those of node A’s neighbors. Therefore, the 

resource capacity of node 
in  considers both the CPU resources of itself and those of its 

neighbor nodes. For a virtual node 
Vin N , the higher its resource capacity is, the larger 

resources it demands, and it is more difficult to map due to the lack of resources in the SN. So 

we consider it more important and should be mapped first. For a substrate node 
Sin N , the 

higher its resource capacity is, the larger available resources it has, and it is more important in 

the SN as it can facilitate the node mapping. 

Definition 2 (Communication Capacity, CC)  The communication capacity of node 
in  is 

defined as the total bandwidth of its adjacent links:  

( )

( ) ( )
i

i

l L n

CC n BW l


                                                        (9) 

where ( )iL n  denotes the adjacent link set of node 
in . 

Definition 3 (Degree, D)  The degree of node 
in  is defined as the number of its adjacent 

links:  

  ( )i iD n dg n                                                         (10) 

where ( )idg n  denotes the number of the adjacent links of node 
in . 

The degree centrality and communication capacity reflect the local importance of the node 

in the network. A node with high degree has many link connections while a node with large 

communication capacity has strong connections. As show in Fig. 2(a), the degrees of node A 

and node E are both 3, and the communication capacity of node A and node E are both 90. 

Definition 4 (Closeness, C)  The closeness of node 
in is defined as follows:  

( , )
( )

( , )
j

i j

i

n N i j

bw n n
C n

d n n

                                                     (11) 

where N denotes the set of nodes, ( , )i jbw n n  denotes the available bandwidth of the shortest 

path between node 
in and node jn . ( , )i jd n n  refers to the distance of the shortest path 

between node 
in  and node jn , which is described by the number of hops along this path, and 
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when i j , ( , ) ( , ) 0i j i jbw n n d n n  . 

The traditional closeness centrality is defined by the reciprocal of the sum of shortest 

distances from one node to all other nodes in the network [13], which only considers the 

topology of the network. However, since the VN and SN are weighted networks and changed 

dynamically due to the continuous VNE, we modify the closeness centrality as Eq. (11) for the 

VNE problem, which takes the bandwidth of links into consideration. Thus, if a node stays 

near to other nodes in the network and has strong connections between them, the closeness 

value will be large, and it is more important than other nodes in the network and will be helpful 

to increase the utilization rate of resource. 

Definition 5 (Correlation quality, CQ)  The correlation quality of substrate node 
sn  is 

defined as follows:  

( ( ), )

( ( ), )
( )

N i s

N i s

M
i V

bw M n n

hops M n n

n N

sCQ n e


                                                 (12) 

where M

VN denotes the set of virtual nodes that have been mapped onto the SN, ( )N iM n  

denotes the substrate node that the virtual node 
in  mapped onto, ( ( ), )N i shops M n n  refers to 

the hops of the shortest path between node ( )N iM n and node 
sn . 

From Eq. (12), we know that the virtual nodes in M

VN  have been mapped onto the SN. If an 

unmapped virtual node 
Vvn N  is mapped onto the substrate node 

sn  that is far away from 

( )N iM n ( Vi

Mn N ), the cost of mapping virtual links between 
vn  and Vi

Mn N  will be too large 

according to Eq. (2), resulting in low resource utilization rate of the SN. Therefore, to reduce 

the hops of substrate paths in the link mapping stage, CQ considers both the available 

bandwidth resources and hops of substrate paths in the node mapping stage, which will keep 

the selected substrate nodes that the virtual nodes are mapped onto connected closely to each 

other and facilitate the subsequent link mapping. So the substrate node with larger CQ is more 

important in the SN and should be selected as the mapped node in priority. 

4.3 TOP-MANR algorithm 

In the node mapping stage, the more important virtual node has higher mapping priority, and 

should be mapped onto the substrate node with higher importance. The above five criterions of 

node importance for the VNE problem reflect either the local importance or the global 

importance of a node in the network. However, it is one-sided to determine the importance of 

nodes only relying on one of the criterions in real network. Therefore, different from previous 

work in [13-16], which measure the node importance simply by the product of different 

resource attributes, we combine these criterions together and propose a multi-attribute node 

ranking algorithm based on TOPSIS (TOP-MANR), aiming at achieving a balanced 

importance evaluation results and selecting the nodes with relatively good performance in all 

node attributes. 

TOPSIS is a known classical method for dealing with multi-attribute decision making 

problems [21]. It bases upon the principle that the chosen solution should have the shortest 

distance from the positive ideal solution (PIS) and the farthest distance from the negative ideal 
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solution (NIS). In this subsection, we regard each node in the VN or SN as a solution, and each 

evaluation criterion of node importance as a solution’s attribute, and then the evaluation of 

node importance is transformed into a multi-attribute decision making problem. 

The procedures of the TOP-MANR algorithm are as follows. 

Step 1: Consider a network with F nodes, each node has M importance evaluation criterions, 

and the criterion j of node i is denoted by xij. Thus, the importance decision matrix can be 

expressed as follows:  

11 1

1

M

F M

F FM

x x

x x



 
 


 
  

X                                                  (13) 

Step 2: Since different criterions have different dimensions and orientation of merits, we 

normalize the initial data and eliminate the impact of dimension by dimensionless treatment 

for comparison, and then we obtain the normalized decision matrix:  

' '

11 1

'

' '

1

M

F M

F FM

x x

x x



 
 

  
 
 

X                                                  (14) 

where for the positive criterion, namely bigger is better, '

1 11

( min (max min) )ij ij kj kj kj
k F k Fk F

x x x x x
    

   , 

and for the negative criterion, namely smaller is better, '

11 1

(max (max min) )ij kj ij kj kj
k Nk F k F

x x x x x
    

   . 

Step 3: Considering the different significance of each criterion, we denote the weight of the 

criterion j as 
1

( 1,2, , ,0 1, 1)
M

j j jj
j M  


    , then the weighted normalized decision 

matrix can be expressed as:  

'' ''

11 1

''

'' ''

1

 

M

F M

F FM

x x

x x



 
 

  
 
 

X                                                 (15) 

where 
' ' '

ij j ijx x . 

Step 4: Denote the positive ideal solution as A  (PIS) and the negative ideal solution as A  

(NIS), which are formulated as follows:  

'' '' ''

1 2 1 2
1 1 1

,{ , , , } {max max max }, ,M i i iM
i F i F i F

A x x x x x x   

     
                               (16) 

'' '' ''

1 2 1 2
1 1 1

,{ , , , } {min min min }, ,M i i iM
i F i F i F

A x x x x x x  

     

                                  (17) 

Step 5: Calculate the Euclidean distances of each solution to the PIS A  and the NIS A , 

which is denoted by 
iD  and 

iD , respectively, and formulated as follows:  
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'' 2

1

( ) , 1,2,...,
M

i ij j

j

D x x i F 



                                            (18) 

'' 2

1

( ) , 1,2,...,
M

i ij j

j

D x x i F



                                             (19) 

Step 6: Calculate the relative closeness 
iC  of each solution to the ideal solutions, which can 

be expressed as follows:  

, 1,2,...,i

i

i i

D
C i F

D D



 
 


                                              (20) 

where 0 1iC  . The larger the index value is, the more important the node is in the network. 

Step 7: Rank the nodes in the network according to the descending order of the value of 
iC . 

In this paper, we take the resource capacity, the communication capacity, the degree and 

the closeness as the evaluation criterions of importance for virtual nodes and substrate nodes. 

Besides, the correlation quality is also selected as an evaluation criterion of importance for 

substrate nodes, which ensures the hops of the substrate paths that the virtual links are mapped 

onto are not too large. For all these five criterions, a larger value is better. Then, we can obtain 

the ranking sequences for virtual nodes and substrate nodes through the TOP-MANR 

algorithm. 

5. Heuristic Algorithm Design 

Based on the multi-attribute node ranking, we propose a novel heuristic algorithm (TOP-VNE) 

for the VNE problem, which consists of the node mapping stage based on TOP-MANR and the 

link mapping stage based on the shortest-path algorithm. 

5.1 Node mapping algorithm 

In the node mapping stage, we adopt a greedy strategy to map the virtual nodes in the VNR 

onto the substrate nodes in the SN according to their ranks, which helps to satisfy the resource 

requirements of the current VNR and balance the loads of the substrate network. 
The details of the node mapping algorithm are shown in Algorithm 1, and it works as 

follows. After calculating the RC, CC, D and C of nodes in the VNR, we sort them by the 

TOP-MANR algorithm. For the virtual node with the highest rank that is unmapped in the 

VNR, we build a set of candidate substrate node, consisting of nodes whose available CPU 

resources can satisfy the requirements of the virtual node and are unmapped with any other 

nodes in the same VNR. If there are no candidate substrate nodes for the virtual node, the node 

mapping is failed. Otherwise, we calculate the RC, CC, D, C and CQ of each node in the 

candidate set and sort them by the TOP-MANR algorithm. Finally, we map the virtual node 

onto the candidate substrate node with the highest rank. Other virtual nodes in the same VNR 

will be mapped in the same way. Note that the RC, CC, C and CQ of the substrate node are all 

calculated using its real-time available resource, and the states of the substrate network are 

changed dynamically during the node mapping stage. Thus the evaluation criterions of virtual 
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nodes and substrate nodes shouldn’t be calculated at the same time. 

Algorithm 1 Node Mapping Algorithm 

input: ( , )S S SG N L : substrate network 

           ( , )V VVG N L : the arriving VNR 

Output: NM : node mapping 

1. for each virtual node Vvn N  do 

2.   Calculate ( )vRC n , ( )vCC n , ( )vD n  and ( )vC n ; 

3. end for 

4. Rank the virtual nodes in current VNR by the TOP-MANR algorithm; 

5. for all the unmapped virtual nodes in current VNR do 

6.   Choose the virtual node vn  with the highest rank; 

7.   Construct the set of candidate substrate nodes ( )vn  for vn ; 

8.    if ( )vn   then 

9.       Return NODE_MAPPING_FAILED; 

10.  else 

11.     for each candidate node sn  in Ω( )vn  do 

12.        Calculate ( )sRC n , ( )sCC n , ( )sD n , ( )sC n  and ( )sCQ n ; 

13.     end for 

14.     Rank the candidate nodes in Ω( )vn  by the TOP-MANR algorithm, and map vn  onto the 

candidate node sn  with the highest rank, namely ( )N v sM n n ; 

15.  end if 

16. end for 

17. Return NODE_MAPPING_SUCCESS; 

5.2 Link mapping algorithm 

In the link mapping stage, TOP-VNE adopts the shortest-path based algorithm to map virtual 

links onto the shortest substrate paths. Since different substrate paths that virtual links are 

mapped onto may share the same substrate links and compete for their limited bandwidth 

resources, it is difficult or even impossible to map virtual links with large bandwidth demands 

due to the lack of bandwidth resources in the SN. Therefore, virtual links with large bandwidth 

demands should be mapped in priority. Similar to the previous work [19], for each virtual link 

in the VNR, we pre-cut all the links in the SN that do not satisfy the bandwidth requirements to 

make the link mapping more efficient. Then we adopt the Dijkstra’s algorithm to compute the 

shortest path between the corresponding substrate nodes. If no shortest path exists, the link 

mapping is failed. Algorithm 2 gives the details of the link mapping algorithm. 

5.3 Time complexity analysis 

The time complexity of TOP-MANR algorithm mainly depends on the computing of closeness 

centrality. For a network with m nodes, the time complexity of Dijkstra’s algorithm to compute 

the shortest path between two nodes is O(m
2
), so the time complexity of ranking nodes in the 

network by TOP-MANR is O(m
3
). 

TOP-VNE is a two-stage algorithm. The complexity of ranking nodes in VNR is O(|NV|
3
), 

and for each virtual node, the complexity of ranking its substrate candidate nodes is O(|NS|
3
), 

so the time complexity of Algorithm 1 is O(|NV|
3
+|NV||NS|

3
). For each virtual link, the 
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complexity of calculating its shortest path is O(|NS|
2
), so the time complexity of Algorithm 2 is 

O(|LV||NS|
2
). Therefore, the time complexity of TOP-VNE algorithm is 

O(|NV|
3
+|NV||NS|

3
+|LV||NS|

2
), and it can be solved in polynomial time. 

Algorithm 2 Link Mapping Algorithm 

Input : ( , )S S SG N L : substrate network 

            ( , )V VVG N L : the arriving VNR 

            
NM : node mapping 

Output: LM : link mapping  

1. Rank the virtual links in current VNR according to the required bandwidth in descending order; 

2. for all the unmapped virtual links in current VNR do 

3.   Choose the virtual link uvl  with the highest rank; 

4.   tem

S S

pG G ; 

5.   for each substrate link 
ijl  in p

S

temG  do 

6.      if ( ) ( )ij uvBW l BW l  then 

7.         cut 
ijl  in p

S

temG ; 

8.      end if 

9.   end for 

10.   Calculate the shortest path uvp  from ( )uNM n  to ( )vNM n  in p

S

temG  by Dijkstra’s algorithm; 

11.  if no shortest path exists then 

12.     Return LINK_MAPPING_FAILED; 

13.  else 

14.     ( )uv uvLM l p ; 

15.  end if 

16. end for 

17. Return LINK_MAPPING_SUCCESS; 

6. Performance Evaluation 

In this section, we first describe the simulation environment, and then present our main 

evaluation results. Our evaluation focuses primarily on the comparison of TOP-VNE with 

several existing VNE algorithms in terms of long-term average revenue, long-term R/C ratio, 

VNR acceptance ratio and runtime. 

6.1 Simulation environment 

Similar to the previous work [10], we use GT-ITM tool [22] to generate the topologies of SN 

and VNRs. The SN is configured with 100 nodes and about 500 links. The CPU resources of 

substrate nodes and the bandwidth resources of substrate links are real numbers uniformly 

distributed between 50 and 100. We assume that the arrival of VNRs follows the Poisson 

process with an average arrival rate of 5 VNRs per 100 time units, and each VNR has an 

exponentially distributed lifetime with an average of 1000 time units. In each VNR, the 

number of virtual nodes is uniformly distributed between 2 and   ( 2  ), and the link 

connectivity rate of virtual node pair is set as   ( 0 1  ). The CPU and bandwidth 

resources requirements of virtual nodes and links are real numbers uniformly distributed 

between 0 and 50. Besides, for the virtual nodes, we set the weight of the four importance 

evaluation criterions as 1/ 4 ( 1,2,3,4)i i   , and for the substrate nodes, we set the weight of 
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the five importance evaluation criterions as 1/ 5 ( 1,2,3,4,5)i i   . 

Since VNRs are randomly generated, we run our simulation in each condition for 50000 

time units to achieve a stable-state performance. Each simulation is performed ten instances 

and we record the average value as the final result. 

Several metrics are used to evaluate the performance of the VNE algorithms, including 

long-term average revenue (Eq. (3)), long-term R/C ratio (Eq. (5)), VNR acceptance ratio (Eq. 

(6)) and runtime of the algorithm. Our simulation experiments evaluate four algorithms listed 

in Table 1. TOP-VNE is the algorithm we have proposed in this paper, G-SP is the classical 

greedy algorithm proposed in [10], IC-SP [13] and RW-MM-SP [11] consider the local 

resources and topological attributes in the node ranking, but they don’t balance different 

factors. 

Table 1. Algorithms comparison 
Notation Description 

TOP-VNE 
The proposed algorithm using TOP-MANR to rank the nodes in the node 

mapping stage 

G-SP 
Greedy node mapping that ranks the nodes based on the local resources with 

shortest path based link mapping 

IC-SP 
Greedy node mapping that ranks the nodes based on the improved closeness 

with shortest path based link mapping 

RW-MM-SP 
Greedy node mapping that ranks the nodes based on Markov Random Walk 

model with shortest path based link mapping 

6.2 Evaluation results 

6.2.1 Evaluation for general VNRs 

We first evaluate the performance of the aforementioned four VNE algorithms by setting a 

fixed maximum number of virtual nodes   as 10 and a fixed link connectivity rate   as 0.5 

for the VNRs. The key observations from our simulations are summarized as follows. 

Fig. 3 shows the long-term average revenue of the four VNE algorithms in stable state. It 

can be seen that our TOP-VNE generates the largest average revenue. The reason is that 

TOP-VNE considers minimizing the hops of the substrate paths that the virtual links are 

mapped onto, so it can reduce the substrate resources allocated to VNRs. As a result, it can 

accept more VNRs in a certain period of time and produce larger revenues. Besides, 

TOP-VNE adopts multi-attribute node ranking, which leads to its largest average revenue. 

Fig. 4 shows the long-term R/C ratio of the four VNE algorithms in stable state. It can be 

seen that the R/C ratio of our TOP-VNE is higher than the other three VNE algorithms. 

Moreover, the R/C ratio of TOP-VNE is almost 0.755, which is almost 18.7% higher than 

IC-SP, 22.8% higher than RW-MM-SP, and 30.4% higher than G-SP. According to the 

definition of R/C ratio, we know that the cost of mapping virtual links have significant effect 

on it. Thus, TOP-VNE achieves higher R/C ratio because it considers mapping the virtual 

nodes onto the substrate nodes nearby, and as a result, the hops of substrate paths that the 

virtual links are mapped onto are reduced, leading to a low cost of link mapping and high R/C 

ratio. 

Fig. 5 shows the acceptance ratio of the four VNE algorithms in stable state. It can be seen 

that our TOP-VNE outperforms the other three VNE algorithms. Moreover, the acceptance 

ratio of TOP-VNE is almost 0.929, which is almost 5.5% higher than IC-SP, 18.2% higher than 

RW-MM-SP, and 22.7% higher than G-SP. The reason is that TOP-VNE considers multiple 

topological characteristics together and balances them when ranking the nodes, which better 
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coordinates the node mapping stage and the link mapping stage, and results in its acceptance 

ratio being the highest. 

Fig. 6 shows the average runtime of the four algorithms run on the same PC. It can be seen 

that the runtime of our TOP-VNE is slightly larger than RW-MM-SP and IC-SP. The main 

reason is that TOP-VNE need to compute the node ranks both in VNRs and SN in the node 

mapping stage, which leads to a larger runtime. However, TOP-VNE is also a polynomial time 

algorithm, and one can conclude that the differences in R/C ratio, revenue and acceptance ratio 

justify the affordable runtime spent by TOP-VNE. 

 
          Fig. 3. Average revenue in stable state 

 
            Fig. 5. Acceptance ratio in stable state 

 
        Fig. 4. R/C ratio in stable state 

 
     Fig. 6. Runtime in stable state 

6.2.2 Evaluation for different kinds of VNRs 

To further evaluate the performance of our TOP-VNE, we compare the R/C ratio and the 

acceptance ratio of the four VNE algorithms under different numbers of virtual nodes and link 

connectivity rates for VNRs. 

First, we set the maximum number of virtual nodes   as increasing from 5 to 40 while 

keeping a fixed link connectivity rate   at 0.5. 

Figs. 7 and 8 show the long-term R/C ratio and the acceptance ratio of four VNE algorithms 

in stable state, respectively. From the figures, we can see that the R/C ratio and the acceptance 

ratio decrease as the number of virtual nodes increases. But our TOP-VNE still have a relative 

higher R/C ratio (IC-SP: 21.7% on average, RW-MM-SP: 28.4% on average, G-SP: 42.1% on 

average) and a relative higher acceptance ratio (IC-SP: 7.7% on average, RW-MM-SP: 19.2% 

on average, G-SP: 28.2% on average) than the other three VNE algorithms. It can be 
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understood as follows. As the number of virtual nodes increases, the number of virtual links 

connecting each pair of virtual nodes also increases. As a result, VNRs need to consume more 

resources if accepted, resulting in a lower R/C ratio and acceptance ratio. The evaluation 

results indicate that TOP-VNE is more efficient when the VNRs require more virtual nodes. 

Second, we set the link connectivity rate of VNRs as increasing from 0.1 to 1.0 while 

keeping a fixed maximum number of virtual nodes   at 10. 

Figs. 9 and 10 show the long-term R/C ratio and the acceptance ratio of four VNE 

algorithms in stable state, respectively. From the figures, we can see that the R/C ratio and the 

acceptance ratio decrease as the link connectivity rate increases. But our TOP-VNE still have a 

relative higher R/C ratio (IC-SP: 14.8% on average, RW-MM-SP: 26.7% on average, G-SP: 

31.5% on average) and a relative higher acceptance ratio (IC-SP: 8.2% on average, 

RW-MM-SP: 21.3% on average, G-SP: 28.6% on average) than the other three VNE 

algorithms. It can be understood as follows. As the link connectivity rate increases, the number 

of virtual links required by VNRs also increases. Thus, VNRs need to consume more 

bandwidth resources in VNE, leading to a lower R/C ratio and acceptance ratio. The evaluation 

results demonstrate that our TOP-VNE achieves a much better performance under different 

link connectivity rates condition. Compared with Figs. 7 and 8, we note that the curves in Figs. 

7 and 8 drop down more steeply than that in Figs. 9 and 10, which reflects that the number of 

virtual nodes have greater influence on the performance of the VNE algorithms than the link 

connectivity rate.  

 
Fig. 7. R/C ratio under different number of 

virtual nodes in stable state 

 
Fig. 9. R/C ratio under different link 

connectivity rate in stable state 

 
Fig. 8. Acceptance ratio under different 

number of virtual nodes in stable state 

 
Fig. 10. Acceptance ratio under different link 

connectivity rate in stable state 
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7. Conclusion 

Virtual network embedding is one of the main challenges in network virtualization. In this 

paper, we introduce and redefine five node attributes to analyze the embedding potential of 

nodes in the VNs and the SN, and then rank them according to their importance in the network 

evaluated by using TOPSIS method. Based on the node ranks, we propose a novel VNE 

algorithm TOP-VNE. Simulation results show that the proposed algorithm outperforms the 

existing VNE algorithms in terms of the long-term average revenue, the long-term R/C ratio 

and the VNR acceptance ratio under different conditions of VNRs. 

In the future work, we will take more topological attributes (e.g. eigenvector centrality, 

betweenness centrality) into consideration to improve the performance of the algorithm. 

Besides, we will extend our work by considering more aspects of VNE problems, e.g. energy 

consumption, fault tolerance, security issues. 
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