• Title/Summary/Keyword: Short circuit control

Search Result 264, Processing Time 0.023 seconds

Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth (대기압 이상의 열처리 공정압력이 Cu2ZnSn(S,Se)4(CZTSSe) 박막 성장에 미치는 영향)

  • Lee, Byeong Hoon;Yoo, Hyesun;Jang, Jun Sung;Lee, InJae;Kim, Jihun;Jo, Eunae;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.553-558
    • /
    • 2019
  • $Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.

Improvement of Short-Circuit Current of Quantum Dot Sensitive Solar Cell Through Various Size of Quantum Dots (양자점 입도제어를 통한 양자점 감응형 태양전지 단락전류 향상)

  • Ji, Seung Hwan;Yun, Hye Won;Lee, Jin Ho;Kim, Bum-Sung;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/㎠ and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/㎠ and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.

Magneto-Mechano-Triboelectric Generator Enabled by Ferromagnetic-Ferroelectric Composite (강자성-강유전성 복합체를 활용한 자기-기계-마찰전기 변환 발전소자)

  • Yeseul Lim;Geon-Tae Hwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.112-117
    • /
    • 2024
  • The Internet of Things (IoT) device is a key component for Industry 4.0, which is the network in homes, factories, buildings, and infrastructures to monitor and control the systems. To demonstrate the IoT network, batteries are widely utilized as power sources, and the batteries inevitably require repeated replacement due to their limited capacity. Magneto-mechano-electric (MME) generators are one of the candidate to develop self-powered IoT systems since MME generators can harvest electricity from stray alternating current (AC) magnetic fields arising from electric power cables. Herein, we report a magneto-mechano-triboelectric generator enabled by a ferromagnetic-ferroelectric composite. In the triboelectric nylon matrix, a ferromagnetic carbonyl iron powder (CIP) was introduced to induce magnetic force near the AC magnetic field for MME harvesting. Additionally, a ferroelectric ceramic powder was also added to the MME composite material to enhance the charge-trapping capability during triboelectric harvesting. The final ferromagnetic-ferroelectric composite-based MME triboelectric harvester can generate an open-circuit voltage and a short-circuit current of 110 V and 8 μA, respectively, which were enough to turn on a light emitting diode (LED) and charge a capacitor. These results verify the feasibility of the MME triboelectric generator for not only harvesting electricity from an AC magnetic field but also for various self-powered IoT applications.

A Study on Quality Improvement of Electrical Master Box for KUH (한국형 기동헬기 전원분배 제어장치의 품질 향상에 관한 연구)

  • Kim, Young Mok;Jun, Byung Kyu;Jeong, Sang Gyu;Lee, Joo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • The electrical power system of Korean Utility Helicopter(KUH) is designed as a dual control system to enhance the system safety of aircraft and each system is installed separately at left and right of the aircraft. The system is composed of 2 AC generators, 1 APU generator, 2 Transformer Rectifier Units(TRU), AC/DC Electrical Master Box(AC/DC EMB). The AC/DC EMB, consists of 2 AC EMB and 2 DC EMB, is essential equipment which supply and distribute electric power to the aviation electronics and electrical equipment of KUH. There were defects caused by internal short circuit in AC EMB during the first production phase of the KUH. This paper describes the analysis of the defects, troubleshooting process, root cause, and the solution by design change.

Application and Evaluation of Emergency Rates in Overhead Transmission Lines (가공송전선로의 비상용량 응용과 평가)

  • Kim, Sung Duck
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.442-446
    • /
    • 2014
  • A method for applying emergency ratings to improve the reliability of power supply in ACSR overhead transmission lines is described in this paper. Due to re-regulate power industry, most power companies worldwide as well KEPCO have been searching for only economical strategies without new investment. Power demand was rapidly increasing, however, generation amount did not follow sufficiently. Hence in order to increase the transmission capacity for the existing transmission lines in case of peak load, or contingency in transmission lines, an application method of emergency ratings such as short or long term rating is proposed. If applying long term emergency rating instead of static line rating for the period of a peak load, power transmission can be increased to 10 % or more. Furthermore, it was shown that emergency rating can be effectively used in the contingency of double-circuit transmission lines and/or overload cases.

A New Switching Strategy for PWM Voltage Source Inverters (PWM 전압원 인버터의 새로운 스위칭 방법)

  • Jo, Gyu-Min;Gang, Wan-Sik;Kim, Nam-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.84-93
    • /
    • 2000
  • In PWM voltage source inverters operated by conventional switching method, the dead time is inserted in switching signals to prevent tile short circuit of the DC voltage source. The dead time causes detrimental effects to the control performance of the inverter system. So we need to compensate the dead time effects. And the dead time minimization switching method can be considered as the best way to avoid the dead time effects fundamentally. In this paper, a new switching strategy is proposed which is a kind of dead time minimization switching methods. According to the proposed switching method, very short dead time is adopted in only once when the current polarity is changing. And the adopted dead time is equal to the turn off time of the swtiching device or shorter than it. As the proposed method can be done with the polarity information of the reference current in case that the output current of the inverter is controlled, it is easy to solve some problems in comparison with the case that the real current is used to get the polarity changing time; level detection difficulty, noise problem and so on

  • PDF

Improvement of Current Limiting and Recovery Characteristics of Flux-Lock Type SFCL with Series Connection of Two Coils Using Its Third Coil

  • Ko, Seok-Cheol;Kim, Young-Pil;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.472-477
    • /
    • 2017
  • In this work, the current limiting and recovery characteristics of a flux-lock type superconducting fault current limiter (SFCL) with series connection of two coils were effectively improved by adding a third winding into the conventional flux-lock type SFCL with series connection of two coils. To confirm the contribution of the third winding to the current limiting and recovery characteristics of this type of the SFCL, short-circuit testing was carried out with consideration of the third winding, and the effect of the third winding on the current limiting and recovery characteristics was examined by comparative analysis of the amplitude of the limited fault current and the power burden of the high-TC superconducting (HTSC) element comprising the SFCL. Through the analysis of both the limiting impedance and the operational current as the main design parameter of the SFCL, the improved current limiting and recovery characteristics of the flux-lock type SFCL using the third winding could be verified.

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

Wavelet Transform Based Defect Detection for PCB Inspection Machines (PCB 검사기를 위한 웨이블릿 변환 기반의 결함 검출 방법)

  • Youn, Seung-Geun;Kim, Young-Gyu;Park, Tae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1508-1515
    • /
    • 2017
  • This paper proposes the defect detection method for automatic inspection machines in printed circuit boards (PCBs) manufacturing system. The defects of PCB such as open, short, pin hole and scratch can be detected by comparing the standard image and the target image. The standard image is obtained from CAD file such as ODB++ format, and the target image is obtained by arranging, filtering and binarization of captured PCB image. Since the PCB size is too large and image resolution is too high, the image processing requires a lot of memory and computational time. The wavelet transform is applied to compress the standard and target images, which results in reducing the memory and computational time. To increase the inspection accuracy, we utilize the he HH-domain as well as LL-domain of the transformed images. Experimental results are finally presented to show the performance improvement of the proposed method.

Process Development of a Standard Operating Procedure (SOP) for the Manufacturing of Standardized Distribution Boards (규격화된 분전반 제작을 위한 표준작업절차(SOP)의 공정 개발)

  • Ko, Wan-Su;Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.21-27
    • /
    • 2018
  • The purpose of this study is to develop a SOP (Standard Operating Procedure) for a distribution board that can monitor the leakage current of a load distribution line in real time. The developed distribution board was fabricated by applying IEC 61439-1. It consists of the distribution board and an alarm device. The work process for making the distribution board was compliant with the KEMC (Korea Electrical Manufacturers Cooperative) regulations. And the AC distribution board range is 1,000 V. In addition, the voltage in DC is less than 1500 V. The distribution board receives a 3-phases and 4-wires power supply system and can supply power to the load of a maximum of 32 single or three phase distribution circuits. Also, leakage current measured on the power distribution board was used by sensors installed. The SOP of the developed distribution board consists of the installation standards for the short circuit alarm device and sensor, the surge protection device, switches and indication lamps, and other devices. The operation procedure was prepared so that each manufacturing step of the distribution board must be confirmed by the persons in charge of preparation, production, quality control and approval before moving forward to the next step.